International Journal of Extreme Manufacturing, Volume. 5, Issue 1, 15501(2023)

Rational design and low-cost fabrication of multifunctional separators enabling high sulfur utilization in long-life lithium-sulfur batteries

[in Chinese]1... [in Chinese]1,*, [in Chinese]1, [in Chinese]1, [in Chinese]2, [in Chinese]2, [in Chinese]1, [in Chinese]1, [in Chinese]1 and [in Chinese]1 |Show fewer author(s)
Author Affiliations
  • 1School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
  • 2School of Environment and Energy, South China University of Technology, Guangzhou 510006, People’s Republic of China
  • show less
    References(84)

    [1] [1] Bruce P G, Freunberger S A, Hardwick L J and Tarascon J M 2012 Li–O2 and Li–S batteries with high energy storage Nat. Mater. 11 19–29

    [2] [2] Manthiram A, Fu Y Z and Su Y S 2013 Challenges and prospects of lithium–sulfur batteries Acc. Chem. Res. 46 1125–34

    [3] [3] Evers S and Nazar L F 2013 New approaches for high energy density lithium–sulfur battery cathodes Acc. Chem. Res. 46 1135–43

    [4] [4] Li J, Zhong W T, Deng Q, Zhang Q M and Yang C H 2022 Recent progress in synthesis and surface modification of nickel-rich layered oxide cathode materials for lithium-ion batteries Int. J. Extrem. Manuf. 4 042004

    [5] [5] FuYS et al 2020 Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide Nat. Commun. 11 845

    [6] [6] Yin Y X, Xin S, Guo Y G and Wan L J 2013 Lithium–sulfur batteries: electrochemistry, materials, and prospects Angew. Chem., Int. Ed. Engl. 52 13186–200

    [7] [7] LiuTF, HuHL,DingXF, Yuan HD,JinCB,NaiJW, Liu Y J,WangY, Wan YHandTao X Y 202012 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020) Energy Storage Mater. 30 346–66

    [8] [8] LiGR,WangS,ZhangYN,LiM,ChenZW andLuJ2018 Revisiting the role of polysulfides in lithium–sulfur batteries Adv. Mater. 30 1705590

    [9] [9] Wang D, Cao Q, Jing B, Wang X Y, Huang T L, Zeng P, Jiang S X, Zhang Q and Sun J Y 2020 A freestanding metallic tin-modified and nitrogen-doped carbon skeleton as interlayer for lithium-sulfur battery Chem. Eng. J. 399 125723

    [10] [10] Zhang X Q, Yuan W, Yang Y, Chen Y, Tang Z H, Wang C, Yuan Y H, Ye Y T, Wu Y P and Tang Y 2020 Immobilizing polysulfide by in situ topochemical oxidation derivative TiC@carbon-included TiO2 core–shell sulfur hosts for advanced lithium–sulfur batteries Small 16 2005998

    [11] [11] Pang Q, Liang X, Kwok C Y and Nazar L F 2016 Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes Nat. Energy 1 16132

    [12] [12] TianLY, ZhangZ,LiuS,LiGRandGaoXP2022 High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium–sulfur batteries Energy Environ. Mater. 5 645–54

    [13] [13] GuoJL,PeiHY, DouY, ZhaoSY, ShaoGSandLiuJP 2021 Rational designs for lithium-sulfur batteries with low electrolyte/sulfur ratio Adv. Funct. Mater. 31 2010499

    [14] [14] Yeon JS,Ko YH,ParkTH,ParkH,KimJandParkHS2022 Multidimensional hybrid architecture encapsulating cobalt oxide nanoparticles into carbon nanotube branched nitrogen-doped reduced graphene oxide networks for lithium–sulfur batteries Energy Environ. Mater. 5 555–64

    [15] [15] Fan LL,LiM,LiXF, XiaoW, ChenZWandLuJ2019 Interlayer material selection for lithium-sulfur batteries Joule 3 361–86

    [16] [16] Jeong Y C, Kim J H, Nam S, Park C R and Yang S J 2018 Rational design of nanostructured functional interlayer/separator for advanced Li–S batteries Adv. Funct. Mater. 28 1707411

    [17] [17] LiSL,ZhangWF, ZhengJF, LvMY, SongHYandDuL 2021 Inhibition of polysulfide shuttles in Li–S batteries: modified separators and solid-state electrolytes Adv. Energy Mater. 11 2000779

    [18] [18] WangJL,CaiW, MuXW, HanLF, Wu N,LiaoC,KanYC and Hu Y 2021 Construction of multifunctional and flame retardant separator towards stable lithium-sulfur batteries with high safety Chem. Eng. J. 416 129087

    [19] [19] Rana M, Li M, Huang X, Luo B, Gentle I and Knibbe R 2019 Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries J. Mater. Chem. A 7 6596–615

    [20] [20] FuA,WangCZ,PeiF, CuiJQ,FangXLandZhengNF 2019 Recent advances in hollow porous carbon materials for lithium–sulfur batteries Small 15 1804786

    [21] [21] Zhou Y J, Liao F, Liu Y and Kang Z H 2022 The advanced multi-functional carbon dots in photoelectrochemistry based energy conversion Int. J. Extrem. Manuf. 4 042001

    [22] [22] Zhang L L, Wang Y J, Niu Z Q and Chen J 2019 Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries Carbon 141 400–16

    [23] [23] Xu Z L, Kim J K and Kang K 2018 Carbon nanomaterials for advanced lithium sulfur batteries Nano Today 19 84–107

    [24] [24] SunJH et al 2021 Critical role of functional groups containing N, S, and O on graphene surface for stable and fast charging Li-S batteries Small 17 2007242

    [25] [25] ZhouXJ,TianJ,Wu QP, HuJLandLiCL2020N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries Energy Storage Mater. 24 644–54

    [26] [26] Liu X, Huang J Q, Zhang Q and Mai L Q 2017 Nanostructured metal oxides and sulfides for lithium–sulfur batteries Adv. Mater. 29 1601759

    [27] [27] Ng S F, Lau M Y L and Ong W J 2021 Lithium–sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion Adv. Mater. 33 2008654

    [28] [28] Pfleging W 2021 Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing Int. J. Extrem. Manuf. 3 012002

    [29] [29] DengH,LiXL,PengQ,WangX,ChenJPandLiYD2005 Monodisperse magnetic single-crystal ferrite microspheres Angew. Chem., Int. Ed. Engl. 44 2782–5

    [30] [30] Wang J W, Wang X, Peng Q and Li Y D 2004 Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres Inorg. Chem. 43 7552–6

    [31] [31] MengX,LeiWJ,YangWW, LiuYQandYu YS2021 Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance J. Colloid Interface Sci. 600 382–9

    [32] [32] He J R, Luo L, Chen Y F and Manthiram A 2017 Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries Adv. Mater. 29 1702707

    [33] [33] Schuster J, He G, Mandlmeier B, Yim T, Lee K T, Bein T and Nazar L F 2012 Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries Angew. Chem., Int. Ed. Engl. 51 3591–5

    [34] [34] CaiWD,RuanSJ,MaC,LiuXJ,WangJT, Qiao WMand Ling L C 2019 Controllable synthesis of mesoporous carbon microspheres with renewable water glass as a template for lithium-sulfur batteries J. Colloid Interface Sci. 554 103–12

    [35] [35] Jayaprakash N, Shen J, Moganty S S, Corona A and Archer L A 2011 Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries Angew. Chem., Int. Ed. Engl. 50 5904–8

    [36] [36] Zeng S B, Arumugam G M, Liu X H, Yang Y Z, Li X, Zhong H, Guo F and Mai Y H 2020 Encapsulation of sulfur into N-doped porous carbon cages by a facile, template-free method for stable lithium-sulfur cathode Small 16 2001027

    [37] [37] He G, Ji X L and Nazar L 2011 High “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons Energy Environ. Sci. 4 2878–83

    [38] [38] Zhang X Q, Yuan W, Yang Y, Yang S Z, Wang C, Yuan Y H, Wu Y P, Kang W Q and Tang Y 2021 Green and facile fabrication of porous titanium dioxide as efficient sulfur host for advanced lithium-sulfur batteries: an air oxidation strategy J. Colloid Interface Sci. 583 157–65

    [39] [39] ZhangJ,YangCP, YinYX,Wan LJandGuoYG2016 Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries Adv. Mater. 28 9539–44

    [40] [40] FengXY, Wu HH,GaoB, ′ .tos.awski M, He X andSwie Zhang Q B 2022 Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries Nano Res. 15 352–60

    [41] [41] MengXF, XuYL,SunXF, WangJ,XiongLL,DuXFand Mao S C 2015 Graphene oxide sheets-induced growth of nanostructured Fe3O4 for a high-performance anode material of lithium ion batteries J. Mater. Chem. A 3 12938–46

    [42] [42] LvHL,JiGB,LiuW, ZhangHQandDuYW2015 Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features J. Mater. Chem. C 3 10232–41

    [43] [43] SunZH,Wu XL,PengZQ,WangJW, GanSY, ZhangYW, Han D X and Niu L 2019 Compactly coupled nitrogen-doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres as polysulfide reservoirs for high-performance lithium–sulfur chemistry Small 15 1902491

    [44] [44] Zeng P, Liu C, Zhao X F, Yuan C, Chen Y G, Lin H P and Zhang L 2020 Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium–sulfur batteries ACS Nano 14 11558–69

    [45] [45] Rui X H, Ding N, Liu J, Li C and Chen C H 2010 Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material Electrochim. Acta 55 2384–90

    [46] [46] Tao XY et al 2016 Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design Nat. Commun. 7 11203

    [47] [47] SunR,BaiY, LuoM,QuMX,WangZH,SunWand Sun K N 2021 Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium–sulfur batteries ACS Nano 15 739–50

    [48] [48] Yao WQ,ZhengWZ,XuJ,TianCX,HanK,SunWZand Xiao S X 2021 ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries ACS Nano 15 7114–30

    [49] [49] Chen C, Jiang Q B, Xu H F, Zhang Y P, Zhang B K, Zhang Z Y, Lin Z and Zhang S Q 2020 Ni/SiO2/Graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries Nano Energy 76 105033

    [50] [50] ZhaoCD,GuoJZ,GuZY, WangXT, ZhaoXX,LiWH, Yu H Y and Wu X L 2022 Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability Nano Res. 15 925–32

    [51] [51] Tian Y et al 2020 Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries Adv. Mater. 32 1904876

    [52] [52] He J R, Bhargav A and Manthiram A 2021 High-energy-density, long-life lithium–sulfur batteries with practically necessary parameters enabled by low-cost Fe–Ni nanoalloy catalysts ACS Nano 15 8583–91

    [53] [53] LiuYM,QinXY, ZhangSQ,LiangGM,KangFY, Chen G H and Li B H 2018 Fe3O4-decorated porous graphene interlayer for high-performance lithium–sulfur batteries ACS Appl. Mater. Interfaces 10 26264–73

    [54] [54] Zhao Y, Liu J F, Zhou Y, Huang X F, Liu Q Q, Chen F M, Qin H Q,Lou H T, Yu D Y W and Hou X H 2021 Defect-rich amorphous iron-based oxide/graphene hybrid-modified separator toward the efficient capture and catalysis of polysulfides ACS Appl. Mater. Interfaces 13 41698–706

    [55] [55] XuZ,WangZ,WangMR,CuiHT, LiuYY, WeiHYand Li J 2021 Large-scale synthesis of Fe9S10/Fe3O4@C heterostructure as integrated trapping-catalyzing interlayer for highly efficient lithium-sulfur batteries Chem. Eng. J. 422 130049

    [56] [56] ZhuRX,LinS,JiaoJF, MaDY, CaiZW, HanyK, Hamouda T M and Cai Y R 2020 Magnetic and mesoporous Fe3O4-modified glass fiber separator for high-performance lithium-sulfur battery Ionics 26 2325–34

    [57] [57] LiDD,YangJF, XuX,WangXW, ChenJT, XuJand Zhao N 2020 Synergistic inhibitory effect of ultralight CNTs-COOH@Fe3O4 modified separator on polysulfides shuttling for high-performance lithium–sulfur batteries J. Membr. Sci. 611 118300

    [58] [58] Wu Z L, Chen S X, Wang L, Deng Q, Zeng Z L, Wang J and Deng S G 2021 Implanting nickel and cobalt phosphide into well-defined carbon nanocages: a synergistic adsorption-electrocatalysis separator mediator for durable high-power Li-S batteries Energy Storage Mater. 38 381–8

    [59] [59] LinJH,ZhangKF, ZhuZQ,ZhangRZ,LiNandZhaoCH 2020 CoP/C nanocubes-modified separator suppressing polysulfide dissolution for high-rate and stable lithium–sulfur batteries ACS Appl. Mater. Interfaces 12 2497–504

    [60] [60] Yu Z et al 2020 Boosting polysulfide redox kinetics by graphene-supported Ni nanoparticles with carbon coating Adv. Energy Mater. 10 2000907

    [61] [61] ZhuYJ,ZuoYZ,Ye F, ZhouJ,TangYFandChenYF2022 Dual-regulation strategy to enhance electrochemical catalysis ability of NiCo2O4-x for polysulfides conversion in Li-S batteries Chem. Eng. J. 428 131109

    [62] [62] DongYF,ZhengSH,QinJQ,ZhaoXJ,ShiHD,WangXH, Chen J and Wu Z S 2018 All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries ACS Nano 12 2381–8

    [63] [63] Zhang L L, Chen X, Wan F, Niu Z Q, Wang Y J, Zhang Q and Chen J 2018 Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium–sulfur batteries ACS Nano 12 9578–86

    [64] [64] Du J G, Ahmed W, Xu J, Zhang M Y, Zhang Z L, Zhang X S and Niu D F 2020 Chainmail catalyst of Fe3O4@C/CNTO-modified celgard separator with low metal loading for high-performance lithium–sulfur batteries ChemistrySelect 5 3757–62

    [65] [65] ChengP, GuoPQ,LiuDQ,WangYR,SunK,ZhaoYGand He D Y 2019 Fe3O4/RGO modified separators to suppress the shuttle effect for advanced lithium-sulfur batteries J. Alloys Compod. 784 149–56

    [66] [66] LuoXX,LiWH,LiangHJ,ZhangHX, DuKD,WangXT, Liu X F, Zhang J P and Wu X L 2022 Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion batteries Angew. Chem., Int. Ed. Engl. 61 e202281062

    [67] [67] ZhuHY, LiZY, XuF, QinZX,SunR,WangCH,Lu SJ, Zhang Y F and Fan H S 2022 Ni3Se4@CoSe2 hetero-nanocrystals encapsulated into CNT-porous carbon interpenetrating frameworks for high-performance sodium ion battery J. Colloid Interface Sci. 611 718–25

    [68] [68] LiuDS,LiuDH,HouBH,WangYY, GuoJZ,NingQL and Wu X L 2018 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries Electrochim. Acta 264 292–300

    [69] [69] LiZY, PengZL,SunR,QinZX,LiuXL,WangCH, Fan H SandLuS J 2021 SuperNa+ half/full batteries and ultrafast Na+ diffusion kinetics of cobalt-nickel selenide from assembling Co0.5Ni0.5Se2@NC nanosheets into cross-stacked architecture Chin. J. Chem. 39 2599–606

    [70] [70] Ke CZ,LiuF, ZhengZM,ZhangHH,CaiMT, LiM, Yan Q Z, Chen H X and Zhang Q B 2021 Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation Rare Met. 40 1347–56

    [71] [71] CaiMT et al 2022 Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere Sci. Bull. 67 933–45

    [72] [72] Wu SY, WangW, ShanJW, WangXY, LuDZ,ZhuJL, Liu Z G, Yue L G and Li Y Y 2022 Conductive 1T-VS2.MXene heterostructured bidirectional electrocatalyst enabling compact Li-S batteries with high volumetric and areal capacity Energy Storage Mater. 49 153–63

    [73] [73] ZhangD,WangS,HuRM,GuJA,CuiY, LiB,ChenWH, Liu C T, Shang J X and Yang S B 2020 Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium–sulfur batteries Adv. Funct. Mater. 30 2002471

    [74] [74] Xue P et al 2022 “One Stone Two Birds” design for dual-functional TiO2-TiN heterostructures enabled dendrite-free and kinetics-enhanced lithium–sulfur batteries Adv. Energy Mater. 12 2200308

    [75] [75] Dong C C, Zheng X D, Huang B and Lu M 2013 Enhanced electrochemical performance of FeS coated by Ag as anode for lithium-ion batteries Appl. Surf. Sci. 265 114–9

    [76] [76] Zheng C et al 2017 Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries Nano Energy 33 306–12

    [77] [77] Ding M, Huang S Z, Wang Y, Hu J P, Pam M E, Fan S, Shi Y M, Ge Q and Yang H Y 2019 Promoting polysulfide conversion by catalytic ternary Fe3O4/carbon/graphene composites with ordered microchannels for ultrahigh-rate lithium–sulfur batteries J. Mater. Chem. A 7 25078–87

    [78] [78] Li R R, Shen H J, Pervaiz E and Yang M H 2021 Facile in situ nitrogen-doped carbon coated iron sulfide as green and efficient adsorbent for stable lithium–sulfur batteries Chem. Eng. J. 404 126462

    [79] [79] HuangYC,LiZH,ZhuTY, GaoXH,LvXQ,LingM, Wan Z W and Xia Y Y 2021 Ferromagnetic 1D-Fe3O4@C microrods boost polysulfide anchoring for lithium–sulfur batteries ACS Appl. Energy Mater. 4 3921–7

    [80] [80] LuXL,ZhouXY, YangQ,HuangXM,ZhengQJ,LinDM and Song Y Z 2021 An in-situ electrodeposited cobalt selenide promotor for polysulfide management targeted stable Lithium–Sulfur batteries J. Colloid Interface Sci. 600 278–87

    [81] [81] SunR,BaiY, BaiZ,PengL,LuoM,QuMX,Gao YC, Wang Z H, Sun W and Sun K N 2022 Phosphorus vacancies as effective polysulfide promoter for high-energy-density lithium–sulfur batteries Adv. Energy Mater. 12 2102739

    [82] [82] Qian J et al 2021 Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium–sulfur batteries Adv. Mater. 33 2100810

    [83] [83] Xu J et al 2021 A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li–S chemistry ACS Energy Lett. 6 3053–62

    [84] [84] Wang M X et al 2020 Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery ACS Energy Lett. 5 3041–50

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Rational design and low-cost fabrication of multifunctional separators enabling high sulfur utilization in long-life lithium-sulfur batteries[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 15501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 23, 2022

    Accepted: --

    Published Online: Jul. 26, 2024

    The Author Email: (mewyuan@scut.edu.cn)

    DOI:10.1088/2631-7990/aca40b

    Topics