International Journal of Extreme Manufacturing, Volume. 5, Issue 4, 42010(2023)

CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review

Yixin Zhu1...2, Huiwu Mao1, Ying Zhu1, Xiangjing Wang1, Chuanyu Fu1, Shuo Ke1, Changjin Wan1,*, and and Qing Wan1,23 |Show fewer author(s)
Author Affiliations
  • 1School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
  • 2Yongjiang Lab, Ningbo 315201, People’s Republic of China
  • 3School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People’s Republic of China
  • show less
    References(127)

    [1] [1] Zhu J D, Zhang T, Yang Y C and Huang R 2020 A comprehensive review on emerging artificial neuromorphic devices Appl. Phys. Rev. 7 011312

    [2] [2] Sun B, Guo T, Zhou G D, Ranjan S, Jiao Y X, Wei L, Zhou Y N and Wu Y A 2021 Synaptic devices based neuromorphic computing applications in artificial intelligence Mater. Today Phys. 18 100393

    [3] [3] ZhuYX,ZhuY, MaoHW, HeYL,JiangSS,ZhuL, Chen C S, Wan C J and Wan Q 2022 Recent advances in emerging neuromorphic computing and perception devices J. Appl. Phys. 55 053002

    [4] [4] Sokolov A S, Abbas H, Abbas Y and Choi C 2021 Towards engineering in memristors for emerging memory and neuromorphic computing: a review J. Semicond. 42 013101

    [5] [5] HeYL,ZhuL,ZhuY, ChenCS,JiangSS,LiuR,ShiYand Wan Q 2021 Recent progress on emerging transistor-based neuromorphic devices Adv. Intell. Syst. 3 2000210

    [6] [6] Shastri B J, Tait A N, Ferreira De Lima T, Pernice W H P, Bhaskaran H, Wright C D and Prucnal P R 2021 Photonics for artificial intelligence and neuromorphic computing Nat. Photon. 15 102–14

    [7] [7] Chakraborty I, Jaiswal A, Saha A K, Gupta S K and Roy K 2020 Pathways to efficient neuromorphic computing with non-volatile memory technologies Appl. Phys. Rev. 7 021308

    [8] [8] Choi S, Yang J and Wang G 2020 Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing Adv. Mater. 32 2004659

    [9] [9] Zhang Y et al 2020 Brain-inspired computing with memristors: challenges in devices, circuits, and systems Appl. Phys. Rev. 7 011308

    [10] [10] Ielmini D and Wong H-S P 2018 In-memory computing with resistive switching devices Nat. Electron. 1 333–43

    [11] [11] Akopyan F et al 2015 TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34 1537–57

    [12] [12] Davies M et al 2018 Loihi: a neuromorphic many core processor with on-chip learning IEEE Micro 38 82–99

    [13] [13] Indiveri G et al 2011 Neuromorphic silicon neuron circuits Front. Neurosci. 5 73

    [14] [14] Jiang S, Nie S, He Y, Liu R, Chen C and Wan Q 2019 Emerging synaptic devices: from two-terminal memristors to multiterminal neuromorphic transistors Mater. Today Nano 8 100059

    [15] [15] Upadhyay N K, Jiang H, Wang Z R, Asapu S, Xia Q F and Joshua Yang J 2019 Emerging memory devices for neuromorphic computing Adv. Mater. Technol. 4 1800589

    [16] [16] Covi E, Mulaosmanovic H, Max B, Slesazeck S and Mikolajick T 2022 Ferroelectric-based synapses and neurons for neuromorphic computing Neuromorph. Comput. Eng. 2 012002

    [17] [17] RenYY, SunRY, ChenSHY,DuCY,HanSTandZhouY 2021 Exploring phase-change memory: from material systems to device physics Phys. Status Solidi 15 2000394

    [18] [18] Dai S L, Zhao Y W, Wang Y, Zhang J Y, Fang L, Jin S, Shao Y L and Huang J 2019 Recent advances in transistor-based artificial synapses Adv. Funct. Mater. 29 1903700

    [19] [19] Sun K X, Chen J S and Yan X B 2021 The future of memristors: materials engineering and neural networks Adv. Funct. Mater. 31 2006773

    [20] [20] Sun F Q, Lu Q F, Feng S M and Zhang T 2021 Flexible artificial sensory systems based on neuromorphic devices ACS Nano 15 3875–99

    [21] [21] Woo J, Kim J H, Im J-P and Moon S E 2020 Recent advancements in emerging neuromorphic device technologies Adv. Intell. Syst. 2 2000111

    [22] [22] Wan Q 2023 Neuromorphic devices for brain-like computing J. Inorg. Mater. 38 365–6

    [23] [23] WangSY, LiuXX,XuMS,LiuLW, YangDRandZhouP 2022 Two-dimensional devices and integration towards the silicon lines Nat. Mater. 21 1225–39

    [24] [24] Wan CJ,LiuYH,ZhuLQ,FengP, ShiYandWan Q2016 Short-term synaptic plasticity regulation in solution-gated indium–gallium–zinc-oxide electric-double-layer transistors ACS Appl. Mater. Interfaces 8 9762–8

    [25] [25] ZhuLQ,Wan CJ,GuoLQ,ShiYandWan Q2014 Artificial synapse network on inorganic proton conductor for neuromorphic systems Nat. Commun. 5 3158

    [26] [26] Wan X, Yang Y, Feng P, Shi Y and Wan Q 2016 Short-term plasticity and synaptic filtering emulated in electrolyte-gated IGZO transistors IEEE Electron Device Lett. 37 299–302

    [27] [27] He Y L, Yang Y, Nie S, Liu R and Wan Q 2018 Electric-double-layer transistors for synaptic devices and neuromorphic systems J. Mater. Chem. C 6 5336–52

    [28] [28] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found Nature 453 80–83

    [29] [29] Chang T, Jo S-H, Kim K-H, Sheridan P, Gaba S and Lu W 2011 Synaptic behaviors and modeling of a metal oxide memristive device Appl. Phys. A 102 857–63

    [30] [30] Covi E, Brivio S, Serb A, Prodromakis T, Fanciulli M and Spiga S 2016 HfO2-based memristors for neuromorphic applications 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS) (IEEE) pp 393–6

    [31] [31] Wang Z R et al 2017 Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing Nat. Mater. 16 101–8

    [32] [32] Chen L, He Z-Y, Wang T-Y, Dai Y-W, Zhu H, Sun Q-Q and Zhang D W 2018 CMOS compatible bio-realistic implementation with Ag/HfO2-based synaptic nanoelectronics for artificial neuromorphic system Electronics 7 80

    [33] [33] Kim C, Lee Y, Kim S, Kang M and Kim S 2023 Diverse synaptic weight adjustment of bio-inspired ZrOx-based memristors for neuromorphic system Mater. Sci. Semicond. Process. 157 107314

    [34] [34] XiZN,RuanJJ,LiC,ZhengCY, Wen Z,DaiJY, LiAD and Wu D 2017 Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier Nat. Commun. 8 15217

    [35] [35] Ryu H and Kim S 2020 Pseudo-interface switching of a two-terminal TaOx/HfO2 synaptic device for neuromorphic applications Nanomaterials 10 1550

    [36] [36] Mahata C, Lee C, An Y, Kim M-H, Bang S, Kim C S, Ryu J-H, Kim S, Kim H and Park B-G 2020 Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems J. Alloys Compd. 826 154434

    [37] [37] Oh S, Kim T, Kwak M, Song J, Woo J, Jeon S, Yoo I K and Hwang H 2017 HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications IEEE Electron Device Lett. 38 732–5

    [38] [38] Chen L, Wang T-Y, Dai Y-W, Cha M-Y, Zhu H, Sun Q-Q, Ding S-J, Zhou P, Chua L and Zhang D W 2018 Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications Nanoscale 10 15826–33

    [39] [39] Yoon C,LeeJH,LeeS,JeonJH,JangJT, KimDH, Kim Y H and Park B H 2017 Synaptic plasticity selectively activated by polarization-dependent energy-efficient ion migration in an ultrathin ferroelectric tunnel junction Nano Lett. 17 1949–55

    [40] [40] Boyn S et al 2017 Learning through ferroelectric domain dynamics in solid-state synapses Nat. Commun. 8 14736

    [41] [41] Ryu H, Wu H N, Rao F B and Zhu W J 2019 Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing Sci. Rep. 9 20383

    [42] [42] ZhuY, HeYL,ChenCS,ZhuL,MaoHW, ZhuYX, WangX J, YangY, Wan C J and Wan Q 2022 HfZrOx-based capacitive synapses with highly linear and symmetric multilevel characteristics for neuromorphic computing Appl. Phys. Lett. 120 113504

    [43] [43] LiuJ,YangHF, MaZY, ChenKJ,HuangXFandWangK 2020 HfO2/TiOx bilayer structure memristor with linear conductance tuning for high density memory and neuromorphic computing J. Appl. Phys. 128 184902

    [44] [44] Jang J T, Kim D, Choi W S, Choi S-J, Kim D M, Kim Y and Kim D H 2020 One transistor–two memristor based on amorphous indium–gallium–zinc-oxide for neuromorphic synaptic devices ACS Appl. Electron. Mater. 2 2837–44

    [45] [45] LiuQ,GaoS,LiY, Yue WJ,ZhangCW, KanHand Shen G Z 2023 HfO2/WO3 heterojunction structured memristor for high-density storage and neuromorphic computing Adv. Mater. Technol. 8 2201143

    [46] [46] MaZL,GeJ,ChenWJ,CaoXC,DiaoSQ,LiuZYand Pan S S 2022 Reliable memristor based on ultrathin native silicon oxide ACS Appl. Mater. Interfaces 14 21207–16

    [47] [47] Woo J, Padovani A, Moon K, Kwak M, Larcher L and Hwang H 2017 Linking conductive filament properties and evolution to synaptic behavior of RRAM devices for neuromorphic applications IEEE Electron Device Lett. 38 1220–3

    [48] [48] Woo J, Moon K, Song J, Lee S, Kwak M, Park J and Hwang H 2016 Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems IEEE Electron Device Lett. 37 994–7

    [49] [49] BaoL,FangYC,WangZW, KangJ,YangYC,Xu JT, Cai Y M and Huang R 2018 Study on microscopic model of resistive switching in amorphous tantalum pentoxide from first-principle calculations 2018 China Semiconductor Technology Int. Conf. (CSTIC) (IEEE) pp 1–3

    [50] [50] LinY, ZengT, XuHY, WangZQ,ZhaoXN,LiuWZ, Ma J G and Liu Y C 2018 Transferable and flexible artificial memristive synapse based on WOx Schottky junction on arbitrary substrates Adv. Electron. Mater. 4 1800373

    [51] [51] Kulkarni S R, Kadetotad D V, Yin S H, Seo J S and Rajendran B 2019 Neuromorphic hardware accelerator for SNN inference based on STT-RAM crossbar arrays 2019 26th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS) (IEEE) pp 438–41

    [52] [52] Park J 2020 Neuromorphic computing using emerging synaptic devices: a retrospective summary and an outlook Electronics 9 1414

    [53] [53] Kim I-J and Lee J-S 2023 Ferroelectric transistors for memory and neuromorphic device applications Adv. Mater. 35 2206864

    [54] [54] Mikolajick T, Park M H, Begon-Lours L and Slesazeck S 2023 From ferroelectric material optimization to neuromorphic devices Adv. Mater. 2206042

    [55] [55] ZhuYX,LiuGX,XinZJ,FuCY, Wan QandShanFK 2020 Solution-processed, electrolyte-gated In2O3 flexible synaptic transistors for brain-inspired neuromorphic applications ACS Appl. Mater. Interfaces 12 1061–8

    [56] [56] Guo X, Bayat F M, Bavandpour M, Klachko M, Mahmoodi M R, Prezioso M, Likharev K K and Strukov D B 2017 Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology 2017 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 6.5.1–4

    [57] [57] Malavena G, Spinelli A S and Compagnoni C M 2018 Implementing spike-timing-dependent plasticity and unsupervised learning in a mainstream NOR flash memory array 2018 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 2.3.1–4

    [58] [58] Wan CJ,LiBJ,FengP, ZhuLQ,ShiYandWan Q2016 Indium-zinc-oxide neuron thin film transistors laterally coupled by sodium alginate electrolytes IEEE Trans. Electron Devices 63 3958–63

    [59] [59] ZhuYX,MaoHW, ZhuY, ZhuL,ChenCS,WangXJ, Ke S, Fu C Y, Wan C J and Wan Q 2022 Photoelectric synapse based on InGaZnO nanofibers for high precision neuromorphic computing IEEE Electron Device Lett. 43 651–4

    [60] [60] JiangSS,HeYL,LiuR,ChenCS,ZhuL,ZhuY, ShiYand Wan Q 2021 Freestanding dual-gate oxide-based neuromorphic transistors for flexible artificial nociceptors IEEE Trans. Electron Devices 68 415–20

    [61] [61] ZhuYX et al 2022 IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity Appl. Phys. Lett. 121 133502

    [62] [62] Jiang J, Wan Q, Sun J and Lu A X 2009 Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature Appl. Phys. Lett. 95 152114

    [63] [63] HeYL,LiuR,JiangSS,ChenCS,ZhuL,ShiYand Wan Q 2020 IGZO-based floating-gate synaptic transistors for neuromorphic computing J. Phys. D: Appl. Phys. 53 215106

    [64] [64] He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Dual-functional long-term plasticity emulated in IGZO-based photoelectric neuromorphic transistors IEEE Electron Device Lett. 40 818–21

    [65] [65] Ke S,FuCY, LinXH,ZhuYX,MaoHW, ZhuL, WangX J, Chen C S, Wan C J and Wan Q 2022 BCM learning rules emulated by a-IGZO-based photoelectronic neuromorphic transistors IEEE Trans. Electron Devices 69 4646–50

    [66] [66] YangY, CuiHY, Ke S,PeiMJ,ShiKL,Wan CJand Wan Q 2023 Reservoir computing based on electric-double-layer coupled InGaZnO artificial synapse Appl. Phys. Lett. 122 043508

    [67] [67] Kim M-K, Kim I-J and Lee J-S 2021 Oxide semiconductor-based ferroelectric thin-film transistors for advanced neuromorphic computing Appl. Phys. Lett. 118 032902

    [68] [68] Kim I-J, Kim M-K and Lee J-S 2023 Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks Nat. Commun. 14 504

    [69] [69] KimJP et al 2023 Dielectric-engineered high-speed, low-power, highly reliable charge trap flash-based synaptic device for neuromorphic computing beyond inference Nano Lett. 23 451–61

    [70] [70] Park J, Jang Y, Lee J, An S, Mok J and Lee S-Y 2023 Synaptic transistor based on In-Ga-Zn-O channel and trap layers with highly linear conductance modulation for neuromorphic computing Adv. Electron. Mater. 9 2201306

    [71] [71] Seo Y-T, Lee M-S, Kim C-H, Woo S Y, Bae J-H, Park B-G and Lee J-H 2019 Si-based FET-type synaptic device with short-term and long-term plasticity using high-κ gate-stack IEEE Trans. Electron Devices 66 917–23

    [72] [72] Yu J-M, Han J-K and Choi Y-K 2022 Mimicking biological synaptic plasticity with a leaky charge-trap FinFET J. Mater. Chem. C 10 9961–7

    [73] [73] Jerry M, Chen P Y, Zhang J, Sharma P, Ni K, Yu S M and Datta S 2017 Ferroelectric FET analog synapse for acceleration of deep neural network training 2017 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 6.2.1–4

    [74] [74] Zhang X M et al 2018 An artificial neuron based on a threshold switching memristor IEEE Electron Device Lett. 39 308–11

    [75] [75] Beck M E, Shylendra A, Sangwan V K, Guo S L, Gaviria Rojas W A, Yoo H, Bergeron H, Su K, Trivedi A R and Hersam M C 2020 Spiking neurons from tunable Gaussian heterojunction transistors Nat. Commun. 11 1565

    [76] [76] Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 A scalable neuristor built with Mott memristors Nat. Mater. 12 114–7

    [77] [77] HuaQL,Wu HQ,GaoB,ZhaoMR,LiYJ,LiXY, HouX, Chang M-F, Zhou P and Qian H 2019 A threshold switching selector based on highly ordered Ag nanodots for X-point memory applications Adv. Sci. 6 1900024

    [78] [78] Wang Z R et al 2018 Fully memristive neural networks for pattern classification with unsupervised learning Nat. Electron. 1 137–45

    [79] [79] Zhang X M et al 2021 Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks Sci. Bull. 66 1624–33

    [80] [80] Zhang Y X, Fang Z L and Yan X B 2022 HfO2-based memristor-CMOS hybrid implementation of artificial neuron model Appl. Phys. Lett. 120 213502

    [81] [81] Hua Q L, Jiang C S and Hu W G 2021 Ag/HfO2-based threshold switching memristor as an oscillatory neuron 2021 5th IEEE Electron Devices Technology & Manufacturing Conf. (EDTM) (IEEE) pp 1–3

    [82] [82] Cao R et al 2022 Compact artificial neuron based on anti-ferroelectric transistor Nat. Commun. 13 7018

    [83] [83] Park M-K, Yoo H-N, Seo Y-T, Woo S Y, Bae J-H, Park B-G and Lee J-H 2020 Field effect transistor-type devices using high-κ gate insulator stacks for neuromorphic applications ACS Appl. Electron. Mater. 2 323–8

    [84] [84] Wang D et al 2022 Synergy of spin-orbit torque and built-in field in magnetic tunnel junctions with tilted magnetic anisotropy: toward tunable and reliable spintronic neurons Adv. Sci. 9 2203006

    [85] [85] Wang D et al 2023 Spintronic leaky-integrate-fire spiking neurons with self-reset and winner-takes-all for neuromorphic computing Nat. Commun. 14 1068

    [86] [86] Li X et al 2020 Power-efficient neural network with artificial dendrites Nat. Nanotechnol. 15 776–82

    [87] [87] Sengupta A and Roy K 2017 Encoding neural and synaptic functionalities in electron spin: a pathway to efficient neuromorphic computing Appl. Phys. Rev. 4 041105

    [88] [88] Moore J J, Ravassard P M, Ho D, Acharya L, Kees A L, Vuong C and Mehta M R 2017 Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats Science 355 eaaj1497

    [89] [89] Trenholm S, McLaughlin A J, Schwab D J, Turner M H, Smith R G, Rieke F and Awatramani G B 2014 Nonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlations Nat. Neurosci. 17 1759–66

    [90] [90] Lavzin M, Rapoport S, Polsky A, Garion L and Schiller J 2012 Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo Nature 490 397–401

    [91] [91] Wan TQ,MaSJ,LiaoFY, Fan LWandChaiY2022 Neuromorphic sensory computing Sci. China Inf. Sci. 65 141401

    [92] [92] Ji X L, Zhao X Y, Tan M C and Zhao R 2020 Artificial perception built on memristive system: visual, auditory, and tactile sensations Adv. Intell. Syst. 2 1900118

    [93] [93] Yoon J H, Wang Z R, Kim K M, Wu H Q, Ravichandran V, Xia Q F, Hwang C S and Yang J J 2018 An artificial nociceptor based on a diffusive memristor Nat. Commun. 9 417

    [94] [94] LiuLA,ZhaoJH,CaoG,ZhengSKandYan XB2021A memristor-based silicon carbide for artificial nociceptor and neuromorphic computing Adv. Mater. Technol. 6 2100373

    [95] [95] ShiKL,HengSZ,WangXJ,LiuSY, CuiHY, ChenCS, Zhu Y X, Xu W G, Wan CJandWan Q 2022An oxide based spiking thermoreceptor for low-power thermography edge detection IEEE Electron Device Lett. 43 2196–9

    [96] [96] Zhu J X, Zhang X M, Wang R, Wang M, Chen P, Cheng L L, Wu Z H, Wang Y Z, Liu Q and Liu M 2022 A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification Adv. Mater. 34 2200481

    [97] [97] Zhou F C et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 776–82

    [98] [98] ChenCS,HeYL,MaoHW, ZhuL,WangXJ,ZhuY, Zhu Y X, Shi Y, Wan C J and Wan Q 2022 A photoelectric spiking neuron for visual depth perception Adv. Mater. 34 2201895

    [99] [99] Gao B et al 2022 Memristor-based analogue computing for brain-inspired sound localization with in situ training Nat. Commun. 13 2026

    [100] [100] Duan Q X, Zhang T, Liu C, Yuan R, Li G, Jun Tiw P, Yang K, Ge C, Yang Y C and Huang R 2022 Artificial multisensory neurons with fused haptic and temperature perception for multimodal in-sensor computing Adv. Intell. Syst. 4 2200039

    [101] [101] Han J-K, Yun S-Y, Yu J-M, Jeon S-B and Choi Y-K 2023 Artificial multisensory neuron with a single transistor for multimodal perception through hybrid visual and thermal sensing ACS Appl. Mater. Interfaces 15 5449–55

    [102] [102] Wang Y et al 2021 MXene-ZnO memristor for multimodal in-sensor computing Adv. Funct. Mater. 31 2100144

    [103] [103] Wan C J, Cai P Q, Guo X T, Wang M, Matsuhisa N, Yang L, Lv Z S, Luo Y F, Loh X J and Chen X D 2020 An artificial sensory neuron with visual-haptic fusion Nat. Commun. 11 4602

    [104] [104] Chen S, Lou Z, Chen D and Shen G Z 2018 An artificial flexible visual memory system based on an UV-motivated memristor Adv. Mater. 30 1705400

    [105] [105] He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Spatiotemporal information processing emulated by multiterminal neuro-transistor networks Adv. Mater. 31 1900903

    [106] [106] Zhong S, Zhang Y S, Zheng H, Yu F W and Zhao R 2022 Spike-based spatiotemporal processing enabled by oscillation neuron for energy-efficient artificial sensory systems Adv. Intell. Syst. 4 2200076

    [107] [107] LiuJQ,GongJD,WeiHH,LiYM,Wu HX,JiangCP, Li Y L and Xu W T 2022 A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation Nat. Commun. 13 7427

    [108] [108] JiangCP, LiuJQ,NiY, QuSD,LiuL,LiY, YangLand Xu W T 2023 Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement Nat. Commun. 14 1344

    [109] [109] GongJD,WeiHH,LiuJQ,SunL,XuZP, HuangHand Xu W T 2022 An artificial visual nerve for mimicking pupil reflex Matter 5 1578–89

    [110] [110] Li C et al 2018 Efficient and self-adaptive in-situ learning in multilayer memristor neural networks Nat. Commun. 9 2385

    [111] [111] Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J and Qian H 2020 Fully hardware-implemented memristor convolutional neural network Nature 577 641–6

    [112] [112] Wan W E et al 2022 A compute-in-memory chip based on resistive random-access memory Nature 608 504–12

    [113] [113] Lin P et al 2020 Three-dimensional memristor circuits as complex neural networks Nat. Electron. 3 225–32

    [114] [114] Williams R S 2017 What’s Next? [The end of Moore’s law]Comput. Sci. Eng. 19 7–13

    [115] [115] Xia Q F and Yang J J 2019 Memristive crossbar arrays for brain-inspired computing Nat. Mater. 18 309–23

    [116] [116] Ding K Y, Wang J J, Zhou Y X, Tian H, Lu L, Mazzarello R, Jia C L, Zhang W, Rao F and Ma E 2019 Phase-change heterostructure enables ultralow noise and drift for memory operation Science 366 210–5

    [117] [117] Ambrogio S et al 2018 Equivalent-accuracy accelerated neural-network training using analogue memory Nature 558 60–67

    [118] [118] Burr G W, Shelby R M, Di Nolfo C, Jang J W, Shenoy R S, Narayanan P, Virwani K, Giacometti E U, Kurdi B and Hwang H 2015 Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element 2014 IEEE Int. Electron Devices Meeting (IEEE) pp 3498–507

    [119] [119] Huo Q et al 2022 A computing-in-memory macro based on three-dimensional resistive random-access memory Nat. Electron. 5 469–77

    [120] [120] Cui J S, An F F, Qian J C, Wu Y X, Sloan L L, Pidaparthy S, Zuo J-M and Cao Q 2023 CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators Nat. Electron. 6 292–300

    [121] [121] Zhu K C et al 2023 Hybrid 2D-CMOS microchips for memristive applications Nature 618 57–62

    [122] [122] Fuller E J et al 2019 Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing Science 364 570–4

    [123] [123] Kim M-K, Kim I-J and Lee J-S 2022 CMOS-compatible compute-in-memory accelerators based on integrated ferroelectric synaptic arrays for convolution neural networks Sci. Adv. 8 eabm8537

    [124] [124] Xi Y, Gao B, Tang J S, Chen A, Chang M-F, Hu X S, Spiegel J V D, Qian H and Wu H Q 2021 In-memory learning with analog resistive switching memory: a review and perspective Proc. IEEE 109 14–42

    [125] [125] Yao X H et al 2020 Protonic solid-state electrochemical synapse for physical neural networks Nat. Commun. 11 3134

    [126] [126] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y and Ren T-L 2022 Vertical MoS2 transistors with sub-1-nm gate lengths Nature 603 259–64

    [127] [127] Ning H K et al 2023 An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning Nat. Nanotechnol. 18 493–500

    Tools

    Get Citation

    Copy Citation Text

    Yixin Zhu, Huiwu Mao, Ying Zhu, Xiangjing Wang, Chuanyu Fu, Shuo Ke, Changjin Wan, and Qing Wan. CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Topical Review

    Received: May. 5, 2023

    Accepted: --

    Published Online: Jul. 24, 2024

    The Author Email: Wan Changjin (cjwan@nju.edu.cn)

    DOI:10.1088/2631-7990/acef79

    Topics