Acta Photonica Sinica, Volume. 51, Issue 10, 1006001(2022)

Research on Fiber-optic Ultrasonic Imaging of Seismic Physical Models(Invited)

Zhihua SHAO1,2, Huanhuan YIN1,2, Ruohui WANG1,2, and Xueguang QIAO1,2、*
Author Affiliations
  • 1School of Physics,Northwest University,Xi'an 710127,China
  • 2Engineering Research Center of Optical Fiber Well Logging Technology for Oil and Gas Resources,Universities of Shaanxi Province,Northwest University,Xi'an 710127,China
  • show less
    References(118)

    [1] S W OR, H L W CHAN, V C LO et al. Ultrasonic wire-bond quality monitoring using piezoelectric sensor. Sensors and Actuators A: Physical, 65, 69-75(1998).

    [2] Shanggong LI, Xiaodong HONG, Yongchuan LI. Study on performance of two-dimensional array ultrasonic transducer based on piezoelectric composite. Transducer and Microsystem Technologies, 41, 28-31(2022).

    [3] H WANG, Y YU, Z CHEN et al. Design and fabrication of a piezoelectric micromachined ultrasonic transducer array based on ceramic PZT, 17, 1381(2017).

    [4] Danhong LU, Qiuxiang Lin, Jianqiao XU et al. Linear ultrasonic motor based on longitudinal-bending coupled modal standing wave excited by the shear vibration mode of PZT ceramics. Journal of Vibration and Shock, 40, 121-127+187(2021).

    [5] J JUNG, V ANNAPUREDDY, G T HWANG et al. 31-mode piezoelectric micromachined ultrasonic transducer with PZT thick film by granule spraying in vacuum process. Applied Physics Letters, 110, 212903(2017).

    [6] J A GUGGENHEIM, J LI, T J ALLEN et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nature Photonics, 11, 714-719(2017).

    [7] C LU, S LU, C ZHONG et al. High-sensitivity low-frequency Fabry-Perot ultrasonic hydrophone with Chitosan diaphragm. IEEE Sensors Journal, 22, 6669-6676(2022).

    [8] H FAN, W MA, L CHEN et al. Ultracompact twisted silica taper for 20 kHz to 94 MHz ultrasound sensing. Optics Letters, 45, 3889-3892(2020).

    [9] Y LI, C ZHOU, J TIAN et al. An all-fiber multi-channel ultrasonic sensor using a switchable fiber Bragg gratings filter in erbium-doped fiber laser. Journal of Lightwave Technology, 37, 4330-4339(2019).

    [10] Y HAZAN, A ROSENTHAL. Simultaneous multi-channel ultrasound detection via phase modulated pulse interferometry. Optics Express, 27, 28844-28854(2019).

    [11] G LIU, M HAN. Multiplexing fiber-optic ultrasound sensors using laser intensity modulation. Optics Letters, 44, 751-754(2019).

    [12] S MIAO, W ZHANG, W HUANG et al. High-resolution static strain sensor based on random fiber laser and beat frequency interrogation. IEEE Photonics Technology Letters, 31, 1530-1533(2019).

    [13] J LI, J XU, X LIU et al. A novel CNTs array-PDMS composite with anisotropic thermal conductivity for optoacoustic transducer applications. Composites Part B: Engineering, 196, 108073(2020).

    [14] K ZHANG, S LI, Z ZHOU. Detection of disbonds in multi-layer bonded structures using the laser ultrasonic pulse-echo mode. Ultrasonics, 94, 411-418(2019).

    [15] Y ZENG, X WANG, X QIN et al. Laser Ultrasonic inspection of a Wire+Arc Additive Manufactured (WAAM) sample with artificial defects. Ultrasonics, 110, 106273(2021).

    [16] Jin GE, Xiaojin CHENG, Jianhua SHANG. Study of defect detection mechanism of carbon fiber reinforced polymer based on laser thermoelastic effect. Journal of Optoelectronics·Laser, 33, 83-90(2022).

    [17] Feng GAO, Hong ZHOU, Chao HUANG. Tests for crack diffraction enhancement based on phased array laser ultrasound. Journal of Vibration and Shock, 41, 37-44+72(2022).

    [18] X ZOU, N WU, Y TIAN et al. Broadband miniature fiber optic ultrasound generator. Optics Express, 22, 18119-18127(2014).

    [19] Y TIAN, N WU, X ZOU et al. Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam. Optical Engineering, 52, 065005(2013).

    [20] Wei ZHUANG. Development of high concentration glutathione intelligent response hybrid gold nanoparticles in tum or microenvironment for PAI/PPTT of tumors(2021).

    [21] Y S CHEN, Y FREY, S KIM et al. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Letters, 11, 348-354(2011).

    [22] H W BAAC, J G OK, A MAXWELL et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy. Scientific Reports, 2, 1-8(2012).

    [23] H W BAAC, J G OK, T LEE et al. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation. Nanoscale, 7, 14460-14468(2015).

    [24] Ranran WU, Hui XIA, Jingjing ZHANG et al. Photoacoustic properties of carbon nanotubes-polydimethylsiloxane. Spectroscopy and Spectral Analysis, 40, 2079-2086(2020).

    [25] P OSER, J JEHN, M KAISER et al. Fiber‐optic photoacoustic generator realized by inkjet‐printing of CNT‐PDMS composites on fiber end faces. Macromolecular Materials and Engineering, 306, 2000563(2021).

    [26] E BIAGI, F MARGHERI, D MENICHELLI. Efficient laser-ultrasound generation by using heavily absorbing films as targets. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48, 1669-1680(2001).

    [27] S H LEE, Y LEE, J J YOH. Reduced graphene oxide coated polydimethylsiloxane film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation. Applied Physics Letters, 106, 081911(2015).

    [28] W Y CHANG, W HUANG, J KIM et al. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers. Applied Physics Letters, 107, 161903(2015).

    [29] Zikang CHEN. Near-infrared absorbing organic small molecule nanoparticles for photoacoustic imaging and photothermal therapy(2020).

    [30] Y MA, L XU, B YIN et al. Ratiometric semiconducting polymer nanoparticle for reliable photoacoustic imaging of pneumonia-induced vulnerable atherosclerotic plaque in vivo. Nano Letters, 21, 4484-4493(2021).

    [31] B POUET, P N RMOLOFOSAON. Seismic physical modeling using laser ultrasonics, 841-844(1990).

    [32] Wenrong SI, Zechun LI, Chaoyu XIONG et al. Design and development of partial discharge positioning system based on MEMS-on-Fiber ultrasonic sensors. Chinese Journal of Sensors and Actuators, 33, 1522-1528(2020).

    [33] Yaming ZHAO. Research on cantilever based fiber-optic ultrasonic sensor(2020).

    [34] Jie ZHANG, Chunliang ZHAO, Deping ZENG et al. Fabry-Perot interferometric fiber-optic ultrasonic hydrophone based on parylene film. Piezoelectrics & Acoustooptics, 34, 355-358(2012).

    [35] N TAKEDA. Fiber optic sensor-based SHM technologies for aerospace applications in Japan. In Smart Sensor Phenomena, Technology, Networks, and Systems, 6933, 15-27(2008).

    [36] Xiaozhu HAO, Hanquan ZHANG, Chenglong WEI et al. Sea trial for fiber-optic hydrophone array used in marine geophysical exploration. Journal of Tropical Oceanography, 37, 93-98(2018).

    [37] Ning SHAN. Extremum experimental study of defect echo base on non-contact optical fiber F-P Laser. Laser Journal, 31, 33-34(2010).

    [38] J A BUCARO, H D DARDY, E F CAROME. Optical fiber acoustic sensor. Applied Optics, 16, 1761-1762(1977).

    [39] L LI, L XIA, Z XIE et al. All-fiber Mach-Zehnder interferometers for sensing applications. Optics Express, 20, 11109-11120(2012).

    [40] P HUA, B J LUFF, G R QUIGLEY et al. Integrated optical dual Mach-Zehnder interferometer sensor. Sensors and Actuators B: Chemical, 87, 250-257(2002).

    [41] B LI, L JIANG, S WANG et al. Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors. Sensors, 11, 5729-5739(2011).

    [42] X WANG, D CHEN, H LI et al. In-line Mach-Zehnder interferometric sensor based on a seven-core optical fiber. IEEE Sensors Journal, 17, 100-104(2016).

    [43] Z TIAN, S YAM. In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor. IEEE Photonics Technology Letters, 21, 161-163(2008).

    [44] D GALLEGO, H LAMELA. High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications. Optics Letters, 34, 1807-1809(2009).

    [45] C LAN, W ZHOU, Y XIE. Detection of ultrasonic stress waves in structures using 3D shaped optic fiber based on a Mach-Zehnder interferometer. Sensors, 18, 1218(2018).

    [46] B OUYANG, Y LI, M KRUIDHOF et al. On-chip silicon Mach-Zehnder interferometer sensor for ultrasound detection. Optics Letters, 44, 1928-1931(2019).

    [47] Y LIU, W PENG, Y LIANG et al. Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement. Optics Communications, 300, 194-198(2013).

    [48] H FU, H LI, M SHAO et al. TCF-MMF-TCF fiber structure based interferometer for refractive index sensing. Optics and Lasers in Engineering, 69, 58-61(2015).

    [49] A LOKMAN, H AROF, S W HARUN et al. Optical fiber relative humidity sensor based on inline Mach-Zehnder interferometer with ZnO nanowires coating. IEEE Sensors Journal, 16, 312-316(2015).

    [50] X FAN, Q WANG, M ZHOU et al. Humidity sensor based on a graphene oxide-coated few-mode fiber Mach-Zehnder interferometer. Optics Express, 28, 24682-24692(2020).

    [51] S LIU, H MENG, S DENG et al. Fiber humidity sensor based on a graphene-coated core-offset Mach-Zehnder interferometer. IEEE Sensors Letters, 2, 1-4(2018).

    [52] K ATHERTON, F DONG, S G PIERCE et al. Mach-Zehnder optical fiber interferometers for the detection of ultrasound(2000).

    [53] Hongyang ZHOU, Guoming MA, Meng ZHANG et al. Partial discharge ultrasonic signal detection technology in power transformer based on the michelson optical fiber interferometer. Proceedings of the CESS, 6452-6459(2022).

    [54] Wen ZHOU. The high-temperature sensing characteristics of fiber Michelson interferometer and fiber cantilever beam(2016).

    [55] L LIU, P LU, H LIAO et al. Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm. IEEE Sensors Journal, 16, 3054-3058(2016).

    [56] T GANG, M HU, X QIAO et al. Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection. Optics and Lasers in Engineering, 88, 60-64(2017).

    [57] P FAN, W YAN, P LU et al. High sensitivity fiber-optic Michelson interferometric low-frequency acoustic sensor based on a gold diaphragm. Optics Express, 28, 25238-25249(2020).

    [58] P A FOMITCHOV, S KRISHNASWAMY, J D ACHENBACH. Compact phase-shifted Sagnac interferometer for ultrasound detection. Optics & Laser Technology, 29, 333-338(1997).

    [59] K MARKOWSKI, J TURKIEWICZ, T OSUCH. Optical microphone based on Sagnac interferometer with polarization maintaining optical fibers. Proceedings of SPIE, 8903, 89030Q(2013).

    [60] J MA, Y Q YU, W JIN. Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias. Optics Express, 23, 29268-29278(2015).

    [61] W ZHAO, F WANG, J WANG et al. A Sagnac-based interferometer with optimal polarization control for Lamb wave detection. Optics & Laser Technology, 143, 107325(2021).

    [62] Zhigang LI. Research on all fiber Fabry Perot interferometric strain and ultrasonic sensor(2019).

    [63] Ning SHAN, Yan ZHAO. Design and experimental study of optical fiber F-P ultrasonic sensor. Sensors and Microsystems, 29, 72-75(2010).

    [64] Guoming MA, Hongyang ZHOU, Yunpeng LIU et al. Optical fiber ultrasonic detection technology and new multiplexing method for transformer partial discharge. High Voltage Technology, 46, 768-1780(2020).

    [65] Chaofei GAO, Shu SONG, Zhongyu TONG et al. Localization of partial discharge in oil based on EFPI optical fiber ultrasonic sensor. High Voltage Apparatus, 55, 90-95+101(2019).

    [66] Bowen LAI. Research on diaphragm EFPI fiber optic acoustic sensor and sensing system(2017).

    [67] Wenlu ZHANG. Research on seismic physical model imaging technology of diaphragm fiber Fabry Perot interferometric ultrasonic sensor(2018).

    [68] Qing ZHENG. Research on ultrasonic detection method of transformer partial discharge based on optical fiber sensing(2016).

    [69] H WEI, S KRISHNASWAMY. A daptive fiber-ring lasers based on an optical fiber Fabry-Perot cavity for high-frequency dynamic strain sensing. Applied Optics, 59, 530-535(2020).

    [70] W ZHANG, P LU, W NI et al. Gold-diaphragm based Fabry-Perot ultrasonic sensor for partial discharge detection and localization. IEEE Photonics Journal, 12, 1-12(2020).

    [71] Y WU, C YU, F WU et al. A highly sensitive fiber-optic microphone based on graphene oxide membrane. Journal of Lightwave Technology, 35, 4344-4349(2017).

    [72] O KILIC, M DIGONNET, G KINO et al. External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror. Measurement Science and Technology, 18, 3049(2007).

    [73] W ZHANG, F CHEN, W MA et al. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor. Optics Express, 26, 11025-11033(2018).

    [74] Q Z RONG, R X ZHOU, Y X HAO et al. Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging. IEEE Photonics Journal, 9, 1-11(2017).

    [75] Z XIANG, W DAI, W RAO et al. A gold diaphragm-based Fabry-Perot interferometer with a fiber-optic collimator for acoustic sensing. IEEE Sensors Journal, 21, 17882-17888(2021).

    [76] W NI, P LU, X FU et al. Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing. Optics Express, 26, 20758-20767(2018).

    [77] X FU, P LU, J ZHANG et al. Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing. Optics Express, 27, 24300-24310(2019).

    [78] S THATHACHARY, JV HOWES, S ASHKENAZI. Polymer waveguides for improved sensitivity in fiber Fabry-Perot ultrasound detectors. IEEE Sensors Journal, 21, 43-50(2020).

    [79] J GUO, C YANG. Highly stabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection. IEEE Photonics Technology Letters, 27, 848-851(2015).

    [80] Ping ZHANG. Performance research and application of ultrasonic sensing system based on fiber grating(2021).

    [81] Qi FU. FBG ultrasonic detection mechanism and system realization based on fiber laser(2017).

    [82] Yuan LI. Research on multi-point fiber laser ultrasonic energy conversion and adaptive FBG ultrasonic detection(2021).

    [83] D J WEBB, J SUROWIEC, M SWEENEY et al. Miniature fiber optic ultrasonic probe, 2839, 76-80(1996).

    [84] A ROSENTHAL, D RAZANSKY, V NTZIACHRISTOS. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Optics Letters, 36, 1833-1835(2011).

    [85] L HU, G LIU, Y ZHU et al. Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel. IEEE Photonics Journal, 8, 1-8(2016).

    [86] W F LIU, J G LI, H Y CHANG et al. A new type of etched fiber grating hydrophone, 9, 255-259(2022).

    [87] C LI, X PENG, J LIU et al. D-shaped fiber Bragg grating ultrasonic hydrophone with enhanced sensitivity and bandwidth. Journal of Lightwave Technology, 37, 2100-2108(2019).

    [88] H WEI, S KRISHNASWAMY. Direct laser writing of a phase-shifted Bragg grating waveguide for ultrasound detection. Optics Letters, 44, 3817-3820(2019).

    [89] B O GUAN, H Y TAM, T LAUS, H L CHAN. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser. IEEE Photonics Technology Letters, 17, 169-171(2004).

    [90] LYUC , S ZHANG, G FANG et al. Performance of dual-frequency ultrasound measurement based on DBR fiber laser hydrophone. Sensors and Actuators A: Physical, 266, 101-110(2017).

    [91] S TANAK, H YOKOSUKA, N TAKAHASHI. Temperature-independent fiber Bragg grating underwater acoustic sensor array using incoherent light. Acoustical Science and Technology, 27, 50-52(2006).

    [92] S TANAKA, H SOMATOMO, K INAMOTO et al. Triple wavelength SOA-based fiber ring laser for use in wavelength-division multiplexed FBG vibration sensor array, 7004, 77-80(2008).

    [93] S TANAKA, K INAMOTO, H YOKOSUKA et al. Multi-wavelength tunable fiber laser using SOA: application to fiber Bragg grating vibration sensor array. Sensors, 411-414(2007).

    [94] S TANAKA, H YOKOSUKA, K INAMOTO et al. Wavelength division multiplexed FBG vibration sensor array: application to analysis of elastic-waves in metal rod(2006).

    [95] B CULSHAW, G THURSBY, D BETZ et al. The detection of ultrasound using fiber-optic sensors. IEEE Sensors Journal, 8, 1360-1367(2008).

    [96] G LIU, M HAM. Multiplexing fiber-optic ultrasound sensors using laser intensity modulation. Optics Letters, 44, 751-754(2019).

    [97] Lin WANG. Research on new swept frequency laser light source for OCT imaging and biomedical sensing(2018).

    [98] Qizhen SUN, Liuyang YANG, Dongchen XU et al. Technology and application progress of optical fiber ultrasonic transducer. Chinese Journal of Lasers, 49, 1210001(2022).

    [99] Jingming SHI, Di ZHENG, Wei PAN et al. Research on fiber grating ultrasonic sensor based on coupling cone structure and its nondestructive testing. Acta Optica Sinica, 39, 53-58(2019).

    [100] Yuanyuan WANG, Hongwei MA, Guangming ZHANG et al. Research on ultrasonic nondestructive testing system based on Fiber Bragg grating. Modern Electronic Technology, 45, 143-146(2022).

    [101] Xuefeng CHEN, Zhibo YANG, Shaohua TIAN et al. Damage identification and health monitoring of composite structures. Vibration, Testing and Diagnosis, 38, 1-10(2018).

    [103] Ridong LI. Research on cable partial discharge detection method based on optical fiber sensing technology(2020).

    [104] W WANG, R PU, X QIAO et al. Seismic-physical modeling using a micro quasi-Michelson fiber-optic interferometer. IEEE Sensors Journal, 19, 1807-1812(2018).

    [105] J K COOPER, D C LAWTON, G F MARGRAVE. The wedge model revisited: a physical modeling experiment. Geophysics, 75, T15-T21(2010).

    [106] J WONG, K W HALL, E V GALLANT et al. Seismic physical modeling at the University of Calgary, 2642-2646(2009).

    [107] D KIM, S SHIN, W CHUNG et al. Development of 3-axis precise positioning seismic physical modeling system for seismic imaging and data Processing. Journal of the Korean Society of Mineral and Energy Resources Engineers, 24-34(2020).

    [108] P B DING, F GONG, F ZHANG et al. A physical model study of shale seismic responses and anisotropic inversion. Petroleum Science, 18, 1059-1068(2021).

    [109] Q WANG, Q LU, W LIANG et al. Propagation characteristics of joint physical simulation of both electromagnetic wave and ultrasonic wave in fractured media model, 933-936(2012).

    [110] J GUO, S XUE, Q ZHAO et al. Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating. Optics Express, 22, 19573-19580(2014).

    [111] X YANG, Z SHAO, H YIN et al. Ultrasonic microfiber sensor based on tapered multi-core fiber. Optics & Laser Technology, 151, 107987(2022).

    [112] Z SHAO, K ZHOU, H YIN et al. Advanced suspended-core fiber sensor for seismic physical modeling. Optics Express, 30, 16384-16395(2022).

    [113] Q RONG, Z SHAO, X YIN et al. Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe. IEEE Journal of Selected Topics in Quantum Electronics, 23, 223-228(2016).

    [114] H YIN, Z SHAO, F CHEN et al. Highly sensitive ultrasonic sensor based on polymer Bragg grating and its application for 3D imaging of seismic physical model. Journal of Lightwave Technology, 40, 5294-5299(2022).

    [115] X LIU, W WANG, Q RONG et al. Highly sensitive photoacoustic imaging: a new strategy for ultrahigh spatial resolution seismic physical model imaging. IEEE Photonics Journal, 12, 1-11(2020).

    [116] K JIN, X LIU, P LI et al. Improved laser-ultrasonic excitation for imaging of seismic physical modeling. Applied Physics B, 127, 1-8(2021).

    [117] Y PENG, S MA, Z SHAO et al. Multifunctional SiO2/C/Fe3O4 composite particles with photoacoustic and magnetocaloric properties. The Journal of Physical Chemistry C, 125, 22335-22345(2021).

    [118] L XU, Z SHAO, Y PENG et al. Laser ultrasonic excitation using graphene heat dissipation film for ultrasonic detection of seismic physical model. Vibroengineering Procedia, 40, 89-95(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zhihua SHAO, Huanhuan YIN, Ruohui WANG, Xueguang QIAO. Research on Fiber-optic Ultrasonic Imaging of Seismic Physical Models(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1006001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jul. 1, 2022

    Accepted: Sep. 16, 2022

    Published Online: Nov. 30, 2022

    The Author Email: QIAO Xueguang (xgqiao@nwu.edu.cn)

    DOI:10.3788/gzxb20225110.1006001

    Topics