Acta Optica Sinica, Volume. 44, Issue 12, 1207001(2024)

Adaptive Non-Iterative Linearization Technique for Broadband Multi-Carrier Microwave Photonic Link

Bing Lu1,2, Kang Chen1,2, Weigang Hou1,2、*, Yifan Bai1,2, Jiaxin Zhang1,2, and Lei Guo1,2
Author Affiliations
  • 1School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2Institute of Intelligent Communication and Network Security, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • show less
    References(26)

    [1] Panda S S S, Panigrahi T, Parne S R et al. Recent advances and future directions of microwave photonic radars: a review[J]. IEEE Sensors Journal, 21, 21144-21158(2021).

    [2] Zhou T, Liu J X, Chen Z Y et al. Ultra-wideband arrayed microwave photonic processing technology[J]. Acta Optica Sinica, 42, 1725001(2022).

    [3] Yang H F, Chai L, Hu J P et al. Optics and microwave photonics technologies illuminate the future of space TT&C system[C](2019).

    [4] Zhu S, Fan X J, Li M et al. Microwave photonic frequency down-conversion and channel switching for satellite communication[J]. Optics Letters, 45, 5000-5003(2020).

    [5] Zhang J J, Li J. Microwave photonics[M]. Satellite photoelectric sensing technology, 11-30(2022).

    [6] Zhao F, Lu Y, Zhang L L et al. Linearized microwave photonic link based on dual-driven Mach-Zehnder modulator[J]. Optical Engineering, 59, 016117(2020).

    [7] Liang X D, Yin F F, Dai Y T et al. Elimination of cross-modulation distortion in a radio frequency-amplified intensity-modulation direct-detection analog photonic link[J]. Optical Engineering, 55, 031103(2015).

    [8] Dupleich D, Grimm M, Schlembach F et al. Practical aspects of a digital feedforward approach for mitigating non-linear distortions in receivers[C], 170-177(2014).

    [9] Zhu X, Jin T, Chi H et al. Linearization of two cascaded intensity-modulator-based analog photonic link[J]. Optical Engineering, 57, 080501(2018).

    [10] Li X H, Yang C, Chong Y H et al. High dynamic range microwave photonic link based on dual-wavelength dual-parallel modulation[J]. Chinese Journal of Lasers, 42, 0105003(2015).

    [11] Deng H J, Li S Y, Yang S M et al. Broadband linearization of microwave photonic links with single-drive dual parallel Mach-Zehnder modulators[J]. Laser & Optoelectronics Progress, 59, 1713002(2022).

    [12] Zhao F, Cai W T, Zhang L L et al. Linearization analysis of microwave photonic link based on balanced detection[J]. Acta Optica Sinica, 39, 1104001(2019).

    [13] Han X Y, Chen X, Yao J P. Simultaneous even- and third-order distortion suppression in a microwave photonic link based on orthogonal polarization modulation, balanced detection, and optical sideband filtering[J]. Optics Express, 24, 14812-14827(2016).

    [14] Bao Y, Li Z H, Li J P et al. Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion[J]. Optics Express, 21, 7354-7361(2013).

    [15] Li P X, Pan W, Huang L et al. Multi-IF-over-fiber based mobile fronthaul with blind linearization and flexible dispersion induced bandwidth penalty mitigation[J]. Journal of Lightwave Technology, 37, 1424-1433(2019).

    [16] Li P X, Pan W, Zou X H et al. Non-iterative blind linearization algorithm for DML-based multi-IF-over-fiber mobile fronthaul systems[J]. Optics Letters, 44, 3901-3904(2019).

    [17] Li P X, Pan W, Zou X H et al. Fast self-adaptive generic digital linearization for analog microwave photonic systems[J]. Journal of Lightwave Technology, 39, 7894-7907(2021).

    [18] Chen Y, Chen Y. Linearization for microwave photonic OFDM transmission systems using an iterative algorithm based on FEC mechanism[J]. Journal of Lightwave Technology, 40, 5013-5020(2022).

    [19] Liu X, Liang X D, Dai Y T et al. Suppression of nonlinear distortions in intensity modulated analog photonic link employing digital signal post-processing[C], 129-132(2016).

    [20] Banwell T, Agarwal A, Toliver P et al. Compensation of cross-gain modulation in filtered multi-channel optical signal processing applications[C], OWW5(2010).

    [21] Xie X J, Dai Y T, Xu K et al. Digital joint compensation of IMD3 and XMD in broadband channelized RF photonic link[J]. Optics Express, 20, 25636-25643(2012).

    [22] Xie X J, Dai Y T, Xu K et al. Digital nonlinearities compensation based on forward distortion information acquisition in channelized RF photonic links[C], 88-91(2013).

    [23] Liang X D, Dai Y T, Yin F F et al. Digital suppression of both cross and inter-modulation distortion in multi-carrier RF photonic link with down-conversion[J]. Optics Express, 22, 28247-28255(2014).

    [24] Ning J Y, Wang Q. A multi-source nonlinear digital compensation method for broadband multi-carrier microwave photonic link[J]. Telecommunication Engineering, 62, 762-768(2022).

    [25] Wang J C, Chen X E, Ding M et al. Digital compensation method for nonlinear distortion of microwave photonic channelized link[J]. Acta Optica Sinica, 43, 1307001(2023).

    [26] Liu E J, Yu Z M, Yin C J et al. Nonlinear distortions compensation based on artificial neural networks in wideband and multi-carrier systems[J]. IEEE Journal of Quantum Electronics, 55, 8000305(2019).

    Tools

    Get Citation

    Copy Citation Text

    Bing Lu, Kang Chen, Weigang Hou, Yifan Bai, Jiaxin Zhang, Lei Guo. Adaptive Non-Iterative Linearization Technique for Broadband Multi-Carrier Microwave Photonic Link[J]. Acta Optica Sinica, 2024, 44(12): 1207001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fourier optics and signal processing

    Received: Jul. 3, 2023

    Accepted: Nov. 19, 2023

    Published Online: Mar. 7, 2024

    The Author Email: Hou Weigang (houwg@cqupt.edu.cn)

    DOI:10.3788/AOS231212

    Topics