Journal of the Chinese Ceramic Society, Volume. 51, Issue 8, 2108(2023)
Review on Cold Sintering Process Technique in Preparation of Ceramic Materials
[1] [1] GUO J, FLOYD R, LOWUM S, et al. Cold sintering: progress, challenges, and future opportunities[J]. Annul Rev Mater Res, 2019, 49: 275-295.
[2] [2] ROSSI R C, FULRATH R M. Final stage densification in vacuum hot-pressing of alumina[J]. J Am Ceram Soc, 1965, 48(11): 558-564.
[3] [3] NING K J, WANG J, MA J, et al. Fabrication of laser grade Yb: Y2O3 transparent ceramics with ZrO2 additive through hot isostatic pressing[J]. Mater Today Commun, 2020, 24: 101185.
[4] [4] AJGALK P, CHENG Z L, HAN X X, et al. Ultra-high creep resistant SiC ceramics prepared by rapid hot pressing[J]. J Eur Ceram Soc, 2022, 42(3): 820-829.
[5] [5] SCHLUP A P, COSTAKIS W J, YOUNGBLOOD J P, et al. Microstructural development of platelet alumina while hot-pressing to transparency[J]. Ceram Int, 2022, 48(2): 2492-2499.
[6] [6] TORAYA H, YOSHIMURA M, SOMIYA S. Hydrothermal reaction-sintering of monoclinic HfO2[J]. J Am Ceram Soc, 1982, 65(9): c159-c160.
[7] [7] YAMASAKI N, YANAGISAWA K, NISHIOKA M, et al. A hydrothermal hot-pressing method: Apparatus and application[J].J Mater Sci Lett, 1986, 5(3): 355-356.
[8] [8] NDAYISHIMIYE A, SENGUL M Y, BANG S H, et al. Comparing hydrothermal sintering and cold sintering process: Mechanisms, microstructure, kinetics and chemistry[J]. J Eur Ceram Soc, 2020, 40(4): 1312-1324.
[9] [9] OGHBAEI M, MIRZAEE O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications[J]. J Alloys Compd, 2010, 494(1-2): 175-189.
[10] [10] ROMUALDO R, POLLYANE M. Microwave fast sintering of ceramic materials[M]//Sintering of Ceramics - New Emerging Techniques: InTech, 2012: 1-25.
[11] [11] LERDPROM W, ZAPATA-SOLVAS E, JAYASEELAN D D, et al. Impact of microwave processing on porcelain microstructure[J]. Ceram Int, 2017, 43(16): 13765-13771.
[12] [12] LERDPROM W, GRASSO S, JAYASEELAN D D, et al. Densification behaviour and physico-mechanical properties of porcelains prepared using spark plasma sintering[J]. Adv Appl Ceram, 2017, 116(6): 307-315.
[13] [13] GUO H Z, BAKER A, GUO J, et al. Cold sintering process: A novel technique for low-temperature ceramic processing of ferroelectrics[J]. J Am Ceram Soc, 2016, 99(11): 3489-3507.
[15] [15] GRASSO S, BIESUZ M, ZOLI L, et al. A review of cold sintering processes[J]. Adv Appl Ceram, 2020, 119(3): 115-143.
[16] [16] GALOTTA A, SGLAVO V M. The cold sintering process: A review on processing features, densification mechanisms and perspectives[J]. J Eur Ceram Soc, 2021, 41(16): 1-17.
[17] [17] GUO H Z, GUO J, BAKER A, et al. Hydrothermal-assisted cold sintering process: A new guidance for low-temperature ceramic sintering[J]. ACS Appl Mater Interfaces, 2016, 8(32): 20909-20915.
[18] [18] YU T, CHENG J, LI L, et al. Current understanding and applications of the cold sintering process[J]. Front Chem Sci Eng, 2019, 13(4): 654-664.
[19] [19] SHEN H Z, GUO N, ZHAO L, et al. Role of ion substitution and lattice water in the densification of cold-sintered hydroxyapatite[J]. Scr Mater, 2020, 177: 141-145.
[20] [20] SHEN H Z, GUO N, LIANG Y H, et al. Synthesis and densification of hydroxyapatite by mechanochemically-activated reactive cold sintering[J]. Scr Mater, 2021, 194: 113717.
[21] [21] GUO N, SHEN H Z, JIN Q, et al. Hydrated precursor-assisted densification of hydroxyapatite and its composites by cold sintering[J]. Ceram Int, 2021, 47(10): 14348-14353.
[22] [22] AKMAL M, HASSAN M U, AFZAL M, et al. Novel approach to sintering hydroxyapatite-alumina nanocomposites at 300℃[J]. Mater Chem Phys, 2021, 260: 124187.
[23] [23] GUO N, SHEN H Z, SHEN P. Cold sintering of chitosan/hydroxyapatite composites[J]. Materialia, 2022, 21: 101294.
[24] [24] SEO J H, GUO J, GUO H Z, et al. Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity[J]. Ceram Int, 2017, 43(17): 15370-15374.
[25] [25] LUO N, LIN Y, CHAMAS M, et al. Cold isostatic sintering to enhance the ionic conductivity of LiFePO4[J]. Ceram Int, 2021, 47(7): 9296-9302.
[26] [26] SEO J, VERLINDE K, RAJAGOPALAN R, et al. Cold sintering process for fabrication of a high volumetric capacity Li4Ti5O12 anode[J]. Mater Sci Eng B, 2019, 250: 114435.
[27] [27] BERBANO S S, GUO J, GUO H Z, et al. Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte[J]. J Am Ceram Soc, 2017, 100(5): 2123-2135.
[28] [28] LENG H Y, HUANG J J, NIE J Y, et al. Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes[J]. J Power Sources, 2018, 391: 170-179.
[29] [29] PEREIRA DA SILVA J G, BRAM M, LAPTEV A M, et al. Sintering of a sodium-based NASICON electrolyte: A comparative study between cold, field assisted and conventional sintering methods[J]. J Eur Ceram Soc, 2019, 39(8): 2697-2702.
[30] [30] JIANG P, GUO P, SHI Y, et al. Solid-state Li metal battery enabled by cold sintering at 120℃[J]. Mater Today Phys, 2021, 20: 100476.
[31] [31] SEO J H, NAKAYA H, TAKEUCHI Y, et al. Broad temperature dependence, high conductivity, and structure-property relations of cold sintering of LLZO-based composite electrolytes[J]. J Eur Ceram Soc, 2020, 40(15): 6241-6248.
[32] [32] MURASE Y, KATO E. Role of water vapor in crystallite growth and tetragonal-monoclinic phase transformation of ZrO2[J]. J Am Ceram Soc, 1983, 66(3): 196-200.
[33] [33] SATO T, SHIMADA M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water[J]. J Am Ceram Soc, 1985, 68(6): 356.
[34] [34] GUO H Z, BAYER T J M, GUO J, et al. Cold sintering process for 8 mol%Y2O3-stabilized ZrO2 ceramics[J]. J Eur Ceram Soc, 2017, 37(5): 2303-2308.
[35] [35] LIN C, LI H Y, HUANG Y M, et al. Phase evolution and enhanced sinterability of cold sintered Fe2O3-doped 8YSZ[J]. Ceram Int, 2020, 46(9): 14217-14223.
[36] [36] SHI C, LAI Q Y, HE A P, et al. Structure and electrical properties of cold sintered 8mol% scandia stabilized zirconia ceramics[J]. Ceram Int, 2021, 47(15): 21582-21587.
[37] [37] NAKAYA H, IWASAKI M, DE BEAUVOIR T H, et al. Applying cold sintering process to a proton electrolyte material: CsH2PO4[J]. J Eur Ceram Soc, 2019, 39(2-3): 396-401.
[38] [38] THABET K, QUAREZ E, JOUBERT O, et al. Application of the cold sintering process to the electrolyte material BaCe0.8Zr0.1Y0.1O3-δ[J]. J Eur Ceram Soc, 2020, 40(9): 3445-3452.
[39] [39] ZHAO Z Y, GAO J, MENG Y Q, et al. Moderate temperature sintering of BaZr0.8Y0.2O3-δ protonic ceramics by A novel cold sintering pretreatment[J]. Ceram Int, 2021, 47(8): 11313-11319.
[40] [40] FUNAHASHI S, GUO J, GUO H Z, et al. Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics[J]. J Am Ceram Soc, 2017, 100(2): 546-553.
[41] [41] GONZALEZ-JULIAN J, NEUHAUS K, BERNEMANN M, et al. Unveiling the mechanisms of cold sintering of ZnO at 250℃ by varying applied stress and characterizing grain boundaries by Kelvin Probe Force Microscopy[J]. Acta Mater, 2018, 144: 116-128.
[42] [42] SERRANO A, CABALLERO-CALERO O, GARCA M , et al. Cold sintering process of ZnO ceramics: effect of the nanoparticle/ microparticle ratio[J]. J Eur Ceram Soc, 2020, 40(15): 5535-5542.
[43] [43] NUR K, MISHRA P T, SILVA J G P, et al. Influence of powder characteristics on cold sintering of nano-sized ZnO with density above 99%[J]. J Eur Ceram Soc, 2021, 41(4): 2648-2662.
[44] [44] JING Y, LUO N N, WU S H, et al. Remarkably improved electrical conductivity of ZnO ceramics by cold sintering and post-heat-treatment[J]. Ceram Int, 2018, 44(16): 20570-20574.
[45] [45] JIANG X P, ZHU G S, XU H R, et al. Preparation of high density ZnO ceramics by the Cold Sintering Process[J]. Ceram Int, 2019, 45(14): 17382-17386.
[46] [46] HONG X Y, JIANG X P, ZHU G S, et al. The preparation of high-density aluminum-doped zinc oxide ceramics by cold sintering process[J]. J Alloys Compd, 2020, 832: 153241.
[47] [47] KERMANI M, BIESUZ M, DONG J, et al. Flash cold sintering: Combining water and electricity[J]. J Eur Ceram Soc, 2020, 40(15): 6266-6271.
[48] [48] ZHAO X T, GUO J, WANG K, et al. Introducing a ZnO-PTFE (polymer) nanocomposite varistor via the cold sintering process[J]. Adv Eng Mater, 2018, 20(7): 1700902.
[49] [49] HRISSON DE BEAUVOIR T, TSUJI K, ZHAO X T, et al. Cold sintering of ZnO-PTFE: Utilizing polymer phase to promote ceramic anisotropic grain growth[J]. Acta Mater, 2020, 186: 511-516.
[50] [50] SI M M, HAO J Y, ZHAO E D, et al. Preparation of zinc oxide/poly-ether-ether-ketone (PEEK) composites via the cold sintering process[J]. Acta Mater, 2021, 215: 117036.
[51] [51] SI M M, GUO J, HAO J Y, et al. Cold sintered composites consisting of PEEK and metal oxides with improved electrical properties via the hybrid interfaces[J]. Compos B Eng, 2021, 226: 109349.
[52] [52] GUO J, SI M M, ZHAO X T, et al. Altering interfacial properties through the integration of C60 into ZnO ceramic via cold sintering process[J]. Carbon, 2022, 190: 255-261.
[53] [53] GUO J, GUO H Z, HEIDARY D S B, et al. Semiconducting properties of cold sintered V2O5 ceramics and Co-sintered V2O5-PEDOT: PSS composites[J]. J Eur Ceram Soc, 2017, 37(4): 1529-1534.
[54] [54] ZHAO Y Y, BERBANO S S, GAO L S, et al. Cold-sintered V2O5-PEDOT: PSS nanocomposites for negative temperature coefficient materials[J]. J Eur Ceram Soc, 2019, 39(4): 1257-1262.
[57] [57] HONG WEN bin, LI L, CAO M, et al. Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics[J]. J Am Ceram Soc, 2018, 101(9): 4038-4043.
[58] [58] LI L, HONG W B, YANG S, et al. Effects of water content during cold sintering process of NaCl ceramics[J]. J Alloys Compd, 2019, 787: 352-357.
[59] [59] SONG X Q, DU K, LI J, et al. Low-fired fluoride microwave dielectric ceramics with low dielectric loss[J]. Ceram Int, 2019, 45(1): 279-286.
[60] [60] LIU B, LI L, SONG K X, et al. Enhancement of densification and microwave dielectric properties in LiF ceramics via a cold sintering and post-annealing process[J]. J Eur Ceram Soc, 2021, 41(2): 1726-1729.
[61] [61] LIU B, SHA K, JIA Y Q, et al. High quality factor cold sintered LiF ceramics for microstrip patch antenna applications[J]. J Eur Ceram Soc, 2021, 41(9): 4835-4840.
[62] [62] JIA Y Q, HONG W B, LI L, et al. Dense LiF microwave dielectric ceramics with near-zero linear shrinkage during sintering[J]. Ceram Int, 2022, 48(19): 28463-28470.
[63] [63] HAO J Y, GUO J, ZHAO E D, et al. Grain size effect on microwave dielectric properties of Na2WO4 ceramics prepared by cold sintering process[J]. Ceram Int, 2020, 46(17): 27193-27198.
[64] [64] HAO J Y, GUO J, MA C S, et al. Cold sintering of Na2WO4 ceramics using a Na2WO4-2H2O chemistry [J]. J Eur Ceram Soc, 2021, 41(12): 6029-6034.
[65] [65] MEDRI V, SERVADEI F, BENDONI R, et al. Nano-to-macroporous TiO2 (anatase) by cold sintering process[J]. J Eur Ceram Soc, 2019, 39(7): 2453-2462.
[66] [66] HANAOR D A H, SORRELL C C. Review of the anatase to rutile phase transformation[J]. J Mater Sci, 2011, 46(4): 855-874.
[67] [67] ZHAO E D, HAO J Y, XUE X, et al. Rutile TiO2 microwave dielectric ceramics prepared via cold sintering assisted two step sintering[J]. J Eur Ceram Soc, 2021, 41(6): 3459-3465.
[68] [68] INDUJA I J, SEBASTIAN M T. Microwave dielectric properties of cold sintered Al2O3-NaCl composite[J]. Mater Lett, 2018, 211: 55-57.
[69] [69] FAOURI S S, MOSTAED A, DEAN J S, et al. High quality factor cold sintered Li2MoO4BaFe12O19 composites for microwave applications[J]. Acta Mater, 2019, 166: 202-207.
[70] [70] NDAYISHIMIYE A, TSUJI K, WANG K, et al. Sintering mechanisms and dielectric properties of cold sintered (1-x) SiO2-x PTFE composites[J]. J Eur Ceram Soc, 2019, 39(15): 4743-4751.
[71] [71] FALK G S, YESID GMEZ GONZLEZ S, HOTZA D. Low-energy microwave synthesis and cold sintering of nanograined TiO2-Nb2O5[J]. Mater Lett, 2020, 278: 128418.
[72] [72] MA M T, SONG K X, JI Y P, et al. 5G microstrip patch antenna and microwave dielectric properties of cold sintered LiWVO6-K2MoO4 composite ceramics[J]. Ceram Int, 2021, 47(13): 19241-19246.
[73] [73] WANG D W, LI L H, JIANG J, et al. Cold sintering of microwave dielectric ceramics and devices[J]. J Mater Res, 2021, 36(2): 333-349.
[74] [74] WANG D X, GUO H Z, MORANDI C S, et al. Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics[J]. APL Mater, 2018, 6(1): 016101.
[75] [75] MA J P, CHEN X M, OUYANG W Q, et al. Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering[J]. Ceram Int, 2018, 44(4): 4436-4441.
[77] [77] GUO N, SHEN H Z, SHEN P. One-step synthesis and densification of BaTiO3 by reactive cold sintering[J]. Scr Mater, 2022, 213: 114628.
[78] [78] MA J Z, LI H Y, WANG H J, et al. Composition, microstructure and electrical properties of K0.5Na0.5NbO3 ceramics fabricated by cold sintering assisted sintering[J]. J Eur Ceram Soc, 2019, 39(4): 986-993.
[79] [79] HUANG H Q, TANG J, LIU J. Preparation of Na0.5Bi0.5TiO3 ceramics by hydrothermal-assisted cold sintering[J]. Ceram Int, 2019, 45(6): 6753-6758.
[80] [80] TANG X Y, LUO N N, FENG Q, et al. Microstructure and electrical property of NaNbO3 ceramics prepared by cold sintering process assisted post-heat-treatment[J]. J Alloys Compd, 2021, 877: 160284.
[81] [81] FUNAHASHI S, GUO H Z, GUO J, et al. Cold sintering and co-firing of a multilayer device with thermoelectric materials[J]. J Am Ceram Soc, 2017, 100(8): 3488-3496.
[82] [82] DOS SANTOS A M, THOMAZINI D, GELFUSO M V. Cold sintering and thermoelectric properties of Ca3Co4O9 ceramics[J]. Ceram Int, 2020, 46(9): 14064-14070.
[83] [83] YU J C, NELO M, LIU X D, et al. Enhancing the thermoelectric performance of cold sintered calcium cobaltite ceramics through optimised heat-treatment[J]. J Eur Ceram Soc, 2022, 42(9): 3920-3928.
[84] [84] BANG S H, HERISSON DE BEAUVOIR T, RANDALL C A. Densification of thermodynamically unstable tin monoxide using cold sintering process[J]. J Eur Ceram Soc, 2019, 39(4): 1230-1236.
[85] [85] YANG C, LI J P, YANG D L, et al. ZrW2O8 with negative thermal expansion fabricated at ultralow temperature: An energy-efficient strategy for metastable material fabrication[J]. ACS Sustain Chem Eng, 2019, 7(17): 14747-14755.
[86] [86] YANG C, LI J P, SHI H F, et al. Effects of the liquid phase content on the microstructure and properties of the ZrW2O8 ceramics with negative thermal expansion fabricated by the cold sintering process[J]. J Eur Ceram Soc, 2020, 40(15): 6079-6086.
[87] [87] LI L, YAN H, HONG W B, et al. Dense gypsum ceramics prepared by room-temperature cold sintering with greatly improved mechanical properties[J]. J Eur Ceram Soc, 2020, 40(13): 4689-4693.
[88] [88] BOUVILLE F, STUDART A R. Geologically-inspired strong bulk ceramics made with water at room temperature[J]. Nat Commun, 2017, 8: 14655.
[89] [89] HAUG M, BOUVILLE F, RUIZ-AGUDO C, et al. Cold densification and sintering of nanovaterite by pressing with water[J]. J Eur Ceram Soc, 2020, 40(3): 893-900.
[90] [90] CAO M, HONG WEN bin, YANG XIAO dong, et al. Dense and strong calcite ceramics prepared by room-temperature cold sintering based on high-pressure-enhanced solubility[J]. J Am Ceram Soc, 2023, 106(3): 1668-1680.
Get Citation
Copy Citation Text
OUYANG Ruifeng, SHI Wei, CHEN Yunxia, SU Xiaoli, ZENG Tao, LI Lei. Review on Cold Sintering Process Technique in Preparation of Ceramic Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2108
Category:
Received: Mar. 23, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Ruifeng OUYANG (262960021@qq.com)
CSTR:32186.14.