Electronics Optics & Control, Volume. 30, Issue 11, -1(2023)
Image Reconstruction Using Compressive ensing Based on Swin Transformer
[1] [1] HE K, WANG Z H, HUANG X, et al.Computational multifocal microscopy[J].Biomedical Optics Express, 2018, 9(12):6477-6496.
[2] [2] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[3] [3] CANDS E J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians.Berlin:EMS Press, 2006:1433-1452.
[4] [4] DUARTE M F, DAVENPORT M A, TAKHAR D, et al.Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine, 2008, 25(2):83-91.
[5] [5] YIN W B, FAN X P, SHI Y H, et al.Compressive sensing based soft video broadcast using spatial and temporal sparsity[J].Mobile Networks and Applications, 2016, 21(6):1002-1012.
[6] [6] MUN S K, FOWLER J E.DPCM for quantized block-based compressed sensing of images[C]//Proceedings of the 20th European Signal Processing Conference(EUSIPCO).Bucharest:IEEE, 2012:1424-1428.
[7] [7] GAO X W, ZHANG J, CHE W B, et al.Block-based compressive sensing coding of natural images by local structural measurement matrix[C]//Data Compression Conference.Snowbird:IEEE, 2015:133-142.
[8] [8] LIU Y, WU S, HUANG X, et al.Hybrid CS-DMRI:periodic time-variant subsampling and omnidirectional total variation based reconstruction[J].IEEE Transactions on Medical Imaging, 2017, 36(10):2148-2159.
[11] [11] DONG W S, SHI G M, LI X, et al.Compressive sensing via nonlocal low-rank regularization[J].IEEE Transactions on Image Processing, 2014, 23(8):3618-3632.
[15] [15] YAO H T, DAI F, ZHANG S L, et al.DR2-Net:deep residual reconstruction network for image compressive sensing[J].Neurocomputing, 2019, 359:483-493.
[16] [16] ZHANG J, GHANEM B.ISTA-Net:interpretable optimization-inspired deep network for image compressive sensing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE, 2018:1828-1837.
[17] [17] BECK A, TEBOULLE M.A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J].SIAM Journal on Imaging Sciences, 2009, 2(1):183-202.
[18] [18] TIAN J P, YUAN W J, TU Y X.Image compressed sensing using multi-scale residual generative adversarial network[J].The Visual Computer, 2021, 38:4193-4202.
[19] [19] ZHANG Z, LIU Y, LIU J, et al.AMP-Net:denoising-based deep unfolding for compressive image sensing[J].IEEE Transactions on Image Processing, 2020, 30:1487-1500.
[20] [20] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE, 2016:770-778.
[21] [21] CANDS E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique, 2008, 346(9-10):589-592.
[22] [22] VASWANI A, SHAZER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.Red Hook:Curran Associates Inc., 2017:6000-6010.
[23] [23] KHAN S, NASEER M, HAYAT M, et al.Transformers in vision:a survey[J].ACM Computing Surveys(CSUR), 2021, 54(10):41-52.
[24] [24] LIU Z, LIU Y T, CAO Y, et al.Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE, 2021:10012-10022.
[25] [25] LIANG J Y, CAO J Z, SUN G L, et al.SwinIR:image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE, 2021:1833-1844.
[26] [26] TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al.NTIRE 2017 challenge on single image super-resolution:Methods and results[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Honolulu: IEEE, 2017:114-125.
[27] [27] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al.Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//British Machine Vision Conference.Surrey:BMVA Press, 2012:135-144.
[28] [28] ZEYDE R, ELAD M, PROTTER M.On single image scale-up using sparse-representations[C]//International Conference on Curves and Surfaces.Berlin:Springer, 2010:711-730.
[29] [29] MARTIN D, FOWLKES C, TAL D, et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the Eighth IEEE International Conference on Computer Vision.Vancouver:IEEE, 2001:416-423.
[30] [30] HUANG J B, SINGH A, AHUJA N.Single image super-resolution from transformed self-exemplars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE, 2015:5197-5206.
Get Citation
Copy Citation Text
OU Baojun, TIAN Jinpeng, ZHANG Ziqin. Image Reconstruction Using Compressive ensing Based on Swin Transformer[J]. Electronics Optics & Control, 2023, 30(11): -1
Received: Nov. 10, 2022
Accepted: --
Published Online: Jan. 20, 2024
The Author Email: