Acta Photonica Sinica, Volume. 53, Issue 9, 0911001(2024)
Digital Holography and Quantitative Phase Imaging: Advances and Prospects (Invtied)
[1] D GABOR. A new microscopic principle. Nature, 161, 777-778(1948).
[2] J W GOODMAN. Introduction to fourier optics(2017).
[3] A DIASPRO. Optical Fluorescence Microscopy(2011).
[4] F ZERNIKE. Phase contrast, a new method for the microscopic observation of transparent objects. Physica, 9, 686-698(1942).
[5] E N LEITH, J UPATNIEKS. Reconstructed wavefronts and communication theory. Journal of the Optical Society of America, 52, 1123-1130(1962).
[6] J W GOODMAN, R W LAWRENCE. Digital image formation from electronically detected holograms. Applied Physics Letters, 11, 77-79(1967).
[7] U SCHNARS, W JÜPTNER. Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics, 33, 179-181(1994).
[8] E CUCHE, F BEVILACQUA, C DEPEURSINGE. Digital holography for quantitative phase-contrast imaging. Optics Letters, 24, 291-293(1999).
[9] T C POON. Digital holography and tree-dimensional display: principles and applications(2006).
[10] D A BOAS, C PITRIS, N RAMANUJAM. Handbook of biomedical optics(2016).
[11] D MALACARA. Optical shop testing(2007).
[12] J H BRUNING, D R HERRIOTT, J GALLAGHER et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses. Applied Optics, 13, 2693-2703(1974).
[13] M TAKEDA, H INA, S KOBAYASHI. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America, 72, 156-160(1982).
[14] N SHAKED, V MICÓ, M TRUSIAK et al. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing. Advanced in Optics and Photonics, 12, 556-611(2020).
[15] Yichen WU, A OZCAN. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods, 136, 4-16(2018).
[16] Fei WANG, Yaoming BIAN, Haichao WANG et al. Phase imaging with an untrained neural network. Light: Science & Applications, 9, 77(2020).
[17] M S S RAHMAN, A OZCAN. Computer-free, all-optical reconstruction of holograms usingdiffractive networks. ACS Photonics, 8, 3375-3384(2021).
[18] D MENGU, A OZCAN. All-optical phase recovery: diffractive computing for quantitative phase imaging. Advanced Optical Materials, 10, 2200281(2022).
[19] E WOLF. Three-dimensional structure determination of semitransparent objects from holographic data. Optics Communications, 1, 153-156(1969).
[20] E N LEITH, J UPATNIEKS. Wavefront reconstruction with diffused illumination and 3-dimensional objects. Journal of the Optical Society of America, 54, 1295-1301(1964).
[21] E N LEITH, J UPATNIEKS. Wavefront reconstruction with continuous-tone objects. Journal of the Optical Society of America, 53, 1377-1381(1963).
[22] J MILGRAM, W C LI. Computational reconstruction of images from holograms. Applied Optics, 41, 853-864(2002).
[23] G POPESCU, T IKEDA, R R DASARI et al. Difraction phase microscopy for quantifying cell structure and dynamics. Optics Letters, 31, 775-777(2006).
[24] D J BRADY, K CHOI, D L MARKS et al. Compressive holography. Optics Express, 17, 13040-13049(2009).
[25] Y S BAEK, Y K PARK. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nature Photonics, 15, 354-360(2021).
[26] J RADON. On the determination of functions from their integral values along certain manifolds. IEEE Transactions on Medical Imaging, 5, 170-176(1986).
[27] C PETER, L WOLFGANG, D DIRK VAN et al. Quantitative phase tomography by holographic reconstruction, 363731(1999).
[28] F CHARRIERE, N PAVILLON, T COLOMB et al. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Optics Express, 14, 7005-7013(2006).
[29] Y COTTE, F TOY, P JOURDAIN et al. Marker-free phase nanoscopy. Nature Photonics, 7, 113-117(2013).
[30] R HORSTMEYER, J CHUNG, OU Xiaoze et al. Diffraction tomography with Fourier ptychography. Optica, 3, 827-835(2016).
[31] F MEROLA, P MEMMOLO, L MICCIO et al. Tomographic flow cytometry by digital holography. Light: Science & Applications, 6, e16241(2017).
[32] Chenfei HU, J J FIELD, V KELKAR et al. Harmonic optical tomography of nonlinear structures. Nature Photonics, 14, 564-569(2020).
[33] Jiaji LI, Ning ZHOU, Jiasong SUN et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light: Science & Applications, 11, 154(2022).
[34] Zhengzhong HUANG, Liangcai CAO. k-space holographic multiplexing for synthetic aperture diffraction tomography. APL Photonics, 9, 056101(2024).
[35] R HEGERL, W HOPPE. Dynamische theorie der kristallstrukturanalyse durch elektronenbeugung im inhomogenen primärstrahlwellenfeld. Berichte der Bunsengesellschaft Für Physikalische Chemie, 74, 1148-1154(1970).
[36] R W GERCHBERG, W O SAXTON. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237-250(1972).
[37] J R FIENUP. Phase retrieval algorithms: a comparison. Applied Optics, 21, 2758-2769(1982).
[38] N STREIBL. Phase imaging by the transport equation of intensity. Optics Communications, 49, 6-10(1984).
[39] Guozhen YANG, Bizhen DONG, Benyuan GU et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Applied Optics, 33, 209-218(1994).
[40] W BISHARA, T W SU, A F COSKUN et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Optics Express, 18, 11181-11191(2010).
[41] A GREENBAUM, Wei LUO, T W SU et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nature Methods, 9, 889-895(2012).
[42] Y RIVENSON, Yibo ZHANG, H GÜNAYDIN et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light: Science & Applications, 7, 17141(2018).
[43] A SINHA, J LEE, Shuai LI et al. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).
[44] M UEDA, T SATO, M KONDO. Superresolution by multiple superposition of image holograms having different carrier frequencies. Optica Acta: International Journal of Optics, 20, 403-410(1973).
[45] D BEGHUIN, E CUCHE, P DAHLGREN et al. Single acquisition polarisation imaging with digital holography. Electronics Letters, 35, 2053-2055(1999).
[46] S SCHEDIN, G PEDRINI, H J TIZIANI et al. Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography. Applied Optics, 38, 7056-7062(1999).
[47] C MAURER, S KHAN, S FASSL et al. Depth of field multiplexing in microscopy. Optics Express, 18, 3023-3034(2010).
[48] Junwei MIN, Baoli YAO, Peng GAO et al. Dual-wavelength slightly off-axis digital holographic microscopy. Applied Optics, 51, 191-196(2012).
[49] P GIRSHOVITZ, N SHAKED. Doubling the field of view in off-axis low-coherence interferometric imaging. Light: Science & Applications, 3, e151(2014).
[50] S CHOWDHURY, W J ELDRIDGE, A WAX et al. Spatial frequency domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging. Optics Letters, 40, 4839-4842(2015).
[51] P HOSSEINI, Y SUNG, Y CHOI et al. Scanning Color Optical Tomography (SCOT). Optics Express, 23, 19752-19762(2015).
[52] M RUBIN, G DARDIKMAN, S K MIRSKY et al. Six-pack off-axis holography. Optics Letters, 42, 4611-4614(2017).
[53] G DARDIKMAN, N A TURKO, N NATIV et al. Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization. Optics Express, 25, 33400-33415(2017).
[54] Zhengzhong HUANG, Liangcai CAO. High bandwidth utilization digital holographic multiplexing: an approach using Kramers-Kronig relations. Advanced Photonics Research, 3, 2100273(2022).
[55] I YAMAGUCHI, Tong ZHANG. Phase-shifting digital holography. Optics Letters, 22, 1268-1270(1997).
[56] Y AWATSUJI, M SASADA, T KUBOTA. Parallel quasi-phase-shifting digital holography. Applied Physics Letters, 85, 1069-1071(2004).
[57] Y AWATSUJI, A FUJII, T KUBOTA et al. Parallel three-step phase-shifting digital holography. Applied Optics, 45, 2995-3002(2006).
[58] Y AWATSUJI, T TAHARA, A KANEKO et al. Parallel two-step phase-shifting digital holography. Applied Optics, 47, D183-D189(2008).
[59] Zhuo WANG, L MILLET, M MIR et al. Spatial Light Interference Microscopy (SLIM). Optics Express, 19, 1016-1026(2011).
[60] T H NGUYEN, M E KANDEL, M RUBESSA et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nature Communications, 8, 210(2017).
[61] Y K PARK, G POPESCU, K BADIZADEGAN et al. Diffraction phase and fluorescence microscopy. Optics Express, 14, 8263-8268(2006).
[62] N LUE, W CHOI, G POPESCU et al. Live cell refractometry using hilbert phase microscopy and confocal reflectance microscopy. Journal of Physical Chemistry A, 113, 13327-13330(2009).
[63] S CHOWDHURY, W J ELDRIDGE, A WAX et al. Structured illumination multimodal 3d-resolved quantitative phase and fluorescence sub-diffraction microscopy. Biomedical Optics Express, 8, 2496-2518(2017).
[64] A DESCLOUX, K S GRUSSMAYER, E BOSTAN et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy. Nature Photonics, 12, 165-172(2018).
[65] Dashan DONG, Xiaoshuai HUANG, Liuju LI et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light: Science & Applications, 9, 11(2020).
[66] T PITKÄAHO, A MANNINEN, T J NAUGHTON. Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy, W2A.5(2017).
[67] Junchao ZHANG, Xiaobo TIAN, Jianbo SHAO et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks. Optics Express, 27, 14903-14912(2019).
[68] Tairan LIU, K DE HAAN, Y RIVENSON et al. Deep learning-based super-resolution in coherent imaging systems. Scientific Reports, 9, 3926(2019).
[69] Y RIVENSON, Tairan LIU, Zhensong WEI et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light: Science & Applications, 8, 23(2019).
[70] Chenfei HU, Shenghua HE, Y J LEE et al. Live-dead assay on unlabeled cells using phase imaging with computational specificity. Nature Communications, 13, 713(2022).
[71] G POPESCU. Quantitative phase imaging of cells and tissues(2011).
[72] Xi CHEN, M E KANDEL, G POPESCU. Spatial light interference microscopy: principle and applications to biomedicine. Advances in Optics and Photonics, 13, 353-425(2021).
[73] Chenfei HU, G POPESCU. Physical significance of backscattering phase measurements. Optics Letters, 42, 4643-4646(2017).
[74] J H BRUNING, D R HERRIOTT, J GALLAGHER et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses. Applied Optics, 13, 2693-2703(1974).
[75] Y PARK, C DEPEURSINGE, G POPESCU. Quantitative phase imaging in biomedicine. Nature Photonics, 12, 578-589(2018).
[76] A HUSSAIN, J L MARTÍNEZ, A LIZANA et al. Super resolution imaging achieved by using on-axis interferometry based on a spatial light modulator. Optics Express, 21, 9615-9623(2013).
[77] M L CRUZ, A CASTRO, V ARRIZÓN. Phase shifting digital holography implemented with a twisted-nematic liquid-crystal display. Applied Optics, 48, 6907-6912(2009).
[78] L Z CAI, Q LIU, X L YANG. Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects. Optics Letters, 29, 183-185(2004).
[79] Peng GAO, Baoli YAO, N LINDLEIN et al. Phase-shift extraction for generalized phase-shifting interferometry. Optics Letters, 34, 3553-3555(2009).
[80] Enbang LI, Jianquan YAO, Daoyin YU et al. Optical phase shifting with acousto-optic devices. Optics Letters, 30, 189-191(2005).
[81] M VANNONI, A SORDINI, G MOLESINI. He-Ne laser wavelength-shifting interferometry. Optics Communications, 283, 5169-5172(2010).
[82] H SCHREIBER, J H BRUNING. Phase shifting interferometry(2007).
[83] K CREATH. Phase-measurement interferometry techniques. Progress in Optics, 26, 349-393(1988).
[84] R SMYTHE, R MOORE. Instantaneous phase measuring interferometry. Optical Engineering, 23, 234361(1984).
[85] N R SIVAKUMAR, W K HUI, K VENKATAKRISHNAN et al. A. Large surface profile measurement with instantaneous phase-shifting interferometry. Optical Engineering, 42, 367-372(2003).
[86] M NOVAK, J MILLERD, N BROCK et al. Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer. Applied Optics, 44, 6861-6868(2005).
[87] T KAKUE, Y MORITANI, K ITO et al. Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography. Optics Express, 18, 9555-9560(2010).
[88] Dong LIANG, Qiu ZHANG, Jing WANG et al. Single-shot Fresnel incoherent digital holography based on geometric phase lens. Journal of Modern Optics, 67, 92-98(2020).
[89] T TAHARA, Y AWATSUJI, A KANEKO et al. Parallel two-step phase-shifting digital holography using polarization. Optical Review, 17, 108-113(2010).
[90] Peng GAO, Baoli YAO. MIN Junwei,. Optics Communications, 284, 4136-4140(2011).
[91] Peng GAO, Baoli YAO, Junwei MIN et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters. Optics Express, 19, 1930-1935(2011).
[92] Hongyi BAI, Mingguang SHAN, Zhi ZHONG et al. Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter. Applied Optics, 54, 9513-9517(2015).
[93] G RODRIGUEZ-ZURITA, C MENESES-FABIAN, N I TOTO-ARELLANO et al. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms. Optics Express, 16, 7806-7817(2008).
[94] C MENESES-FABIAN, G RODRIGUEZ-ZURITA, M D C ENCARNACION-GUTIERREZ et al. Phase-shifting interferometry with four interferograms using linear polarization modulation and a Ronchi grating displaced by only a small unknown amount. Optics Communications, 282, 3063-3068(2009).
[95] G RODRIGUEZ-ZURITA, N I TOTO-ARELLANO, C MENESES-FABIAN et al. One-shot phase-shifting interferometry: five, seven, and nine interferograms. Optics Letters, 33, 2788-2790(2008).
[96] Peng GAO, Baoli YAO, I HARDER et al. Parallel two-step phase-shifting digital holograph microscopy based on a grating pair. Journal of the Optical Society of America A, 28, 434-440(2011).
[97] T D YANG, H J KIM, K J LEE et al. Single-shot and phase-shifting digital holographic microscopy using a 2-D grating. Optics Express, 24, 9480-9488(2016).
[98] N T SHAKED, M T RINEHART, A WAX. Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Optics Letters, 34, 767-769(2009).
[99] Junwei MIN, Baoli YAO, Peng GAO et al. Parallel phase-shifting interferometry based on Michelson-like architecture. Applied Optics, 49, 6612-6616(2010).
[100] T KIM, Renjie ZHOU, M MIR et al. White-light diffraction tomography of unlabelled live cells. Nature Photonics, 8, 256-263(2014).
[101] C F BOHREN, D R HUFMAN. Absorption and scattering of light by small particles(1983).
[102] B BHADURI, C EDWARDS, H PHAM et al. Diffraction phase microscopy: principles and applications in materials and life sciences. Advances in Optics and Photonics, 6, 57-119(2014).
[103] Jiwei ZHANG, Siqing DAI, Chaojie MA et al. A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing. Light: Advanced Manufacturing, 2, 23(2021).
[104] J DYSON. Common-path interferometer for testing purposes. Journal of the Optical Society of America, 47, 386-390(1957).
[105] J DYSON. An interferometer microscope. Proceedings of the Royal Society A, 204, 170-187(1950).
[106] G DARDIKMAN, N. T SHAKED. Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography? [Invited]. Journal of the Optical Society of America A, 36, A1-A11(2019).
[107] C POLHEMUS. Two-wavelength interferometry. Applied Optics, 12, 2071-2074(1973).
[108] J GASS, A DAKOFF, M K KIM. Phase imaging without 2π ambiguity by multiwavelength digital holography. Optics Letters, 28, 1141-1143(2003).
[109] Y JANG, J JANG, Y K PARK. Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. Optics Express, 20, 9673-9681(2012).
[110] N LUE, J W KANG, T R HILLMAN et al. Single-shot quantitative dispersion phase microscopy. Applied Physics Letters, 101, 84101(2012).
[111] T TAHARA, T KAKU, Y ARAI. Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA). Optics Express, 22, 29594-29610(2014).
[112] B TAYEBI, W KIM, F SHARIF et al. Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 25, 7200708(2019).
[113] D ROITSHTAIN, N A TURKO, B JAVIDI et al. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel. Optics Letters, 41, 2354-2357(2016).
[114] N ROTMAN-NATIV, N A TURKO, N T SHAKED. Flipping interferometry with doubled imaging area. Optics Letters, 43, 5543-5546(2018).
[115] V CHHANIWAL, A S G SINGH, R A LEITGEB et al. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd's mirror. Optics Letters, 37, 5127-5129(2012).
[116] I FRENKLACH, P GIRSHOVITZ, N SHAKED. Off-axis interferometric phase microscopy with tripled imaging area. Optics Letters, 39, 1525(2014).
[117] Y N NYGATE, G SINGH, I BARNEA et al. Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells. Optics Letters, 43, 2587-2590(2018).
[118] M BORN, E WOLF. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light(2013).
[119] Y COTTE, M F TOY, E SHAFFER et al. Sub-Rayleigh resolution by phase imaging. Optics Letters, 35, 2176-2178(2010).
[120] R HORSTMEYER, R HEINTZMANN, G POPESCU et al. Standardizing the resolution claims for coherent microscopy. Nature Photonics, 10, 68-71(2016).
[121] S K MIRSKY, N T SHAKED. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution. Optics Express, 27, 26708-26720(2019).
[122] S K MIRSKY, I BARNEA, N T SHAKED. Dynamic tomographic phase microscopy by double six-pack holography. ACS Photonics, 9, 1295-1303(2022).
[123] D BARDELL. The Biologists' Forum: the invention of the microscope. BIOS, 75, 78-84(2004).
[124] E MCLEOD, A OZCAN. Unconventional methods of imaging: computational microscopy and compact implementations. Reports on Progress in Physics, 79, 076001(2016).
[125] A OZCAN. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab on a Chip, 14, 3187-3194(2014).
[126] O MUDANYALI, D TSENG, C OH et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab on a Chip, 10, 1417-1428(2010).
[127] S SEO, S O ISIKMAN, I SENCAN et al. High-throughput lens-free blood analysis on a chip. Analytical Chemistry, 82, 4621-4627(2010).
[128] S SEO, T W SU, D K TSENG et al. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab on a Chip, 9, 777-787(2009).
[129] Wei LUO, A GREENBAUM, Yibo ZHANG et al. Synthetic aperture-based on-chip microscopy. Light: Science & Applications, 4, e261(2015).
[130] A GREENBAUM, Y ZHANG, A FEIZI et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Science Translational Medicine, 6, 267ra175(2014).
[131] D TSENG, O MUDANYALI, C OZTOPRAK et al. Lensfree microscopy on a cellphone. Lab on a Chip, 10, 1787-1792(2010).
[132] S ISIKMAN, W BISHARA, S MAVANDADI et al. Lens-free optical tomographic microscope with a large imaging volume on a chip. Proceedings of the National Academy of Sciences of the United States of America, 108, 7296-7301(2011).
[133] D MISELL. A method for the solution of the phase problem in electron microscopy. Journal of Physics D: Applied Physics, 6, L6(1973).
[134] T LATYCHEVSKAIA, H W FINK. Solution to the twin image problem in holography. Physical Review Letters, 98, 233901(2007).
[135] A GREENBAUM, A OZCAN. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Optics Express, 20, 3129-3143(2012).
[136] Zhengzhong HUANG, Cuifang KUANG, Lin XU et al. Multiplane digital holography based on extrapolation iterations. Optics Communications, 481, 126526(2021).
[137] Peng BAO, Fucai ZHANG, G PEDRINI et al. Phase retrieval using multiple illumination wavelengths. Optics Letters, 33, 309-311(2008).
[138] Yunhui GAO, Liangcai CAO. Projected refractive index framework for multi-wavelength phase retrieval. Optics Letters, 47, 5965-5968(2022).
[139] Yunhui GAO, Liangcai CAO. High-fidelity pixel-super-resolved complex field reconstruction via adaptive smoothing. Optics Letters, 45, 6807-6810(2020).
[140] V SOIFER, V KOTLYAR, L DOSKOLOVICH. Iterative methods for diffractive optical elements computation(1997).
[141] J R FIENUP. Phase retrieval algorithms: a personal tour. Applied Optics, 52, 45-56(2013).
[142] Zhengjun LIU, Jingmin DAI, Xiaogang SUN et al. Generation of hollow Gaussian beam by phase-only filtering. Optics Express, 16, 19926-19933(2008).
[143] V ELSER. Phase retrieval by iterated projections. Journal of the Optical Society of America A, 20, 40-55(2003).
[144] L J ALLEN, M P OXLEY. Phase retrieval from series of images obtained by defocus variation. Optics Communications, 199, 65-75(2001).
[145] Chao ZUO, Jiaji LI, Jiasong SUN et al. Transport of intensity equation: a tutorial. Optics and Lasers in Engineering, 135, 106187(2020).
[146] Chao ZUO, Jiasong SUN, Jialin ZHANG et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix. Optics Express, 23, 14314-14328(2015).
[147] L WALLER, Lei TIAN, G BARBASTATHIS. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Optics Express, 18, 12552-12561(2010).
[148] Chao ZUO, Qian CHEN, Yingjie YU et al. Transport-of-intensity phase imaging using savitzky-golay differentiation filter-theory and applications. Optics Express, 21, 5346-5362(2013).
[149] J A SCHMALZ, T E GUREYEV, D M PAGANIN et al. Phase retrieval using radiation and matter-wave fields: Validity of teague's method for solution of the transport-of-intensity equation. Physical Review A, 84, 023808(2011).
[150] Chao ZUO, Qian CHEN, Lei HUANG. Phase discrepancy analysis and compensation for fast fourier transform based solution of the transport of intensity equation. Optics Express, 22, 17172-17186(2014).
[151] J WEIDLING, S O ISIKMAN, A GREENBAUM et al. Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates. Journal of Biomedical Optics, 17, 126018(2012).
[152] Wei LUO, Yibo ZHANG, Z GÖRÖCS et al. Propagation phasor approach for holographic image reconstruction. Scientific Reports, 6, 22738(2016).
[153] Guoan ZHENG, R HORSTMEYER, C YANG. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics, 7, 739-745(2013).
[154] J MARRISON, L RATY, P MARRIOTT et al. Ptychography-a label free, high-contrast imaging technique for live cells using quantitative phase information. Scientific Reports, 3, 2369(2013).
[155] Lei TIAN, L WALLER. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica, 2, 104-111(2015).
[156] T M GODDEN, A MUNIZ-PINIELLA, J D CLAVERLEY et al. Phase calibration target for quantitative phase imaging with ptychography. Optics Express, 24, 7679-7692(2016).
[157] L WALLER, S S KOU, C J R SHEPPARD et al. Phase from chromatic aberrations. Optics Express, 18, 22817-22825(2010).
[158] D W E NOOM, K S E EIKEMA, S WITTE. Lensless phase contrast microscopy based on multiwavelength fresnel diffraction. Optics Letters, 39, 193-196(2014).
[159] Wenhui ZHANG, Liangcai CAO, D J BRADY et al. Twin-image-free holography: a compressive sensing approach. Physical Review Letters, 121, 093902(2018).
[160] Y RIVENSON, A STERN, B JAVIDI. Overview of compressive sensing techniques applied in holography [Invited]. Applied Optics, 52, A423-A432(2013).
[161] Jiachen WU, Hua ZHANG, Wenhui ZHANG et al. Single-shot lensless imaging with fresnel zone aperture and incoherent illumination. Light: Science & Applications, 9, 1-11(2020).
[162] T LATYCHEVSKAIA, H W FINK. Resolution enhancement in digital holography by self-extrapolation of holograms. Optics Express, 21, 7726-7733(2013).
[163] Zhengzhong HUANG, Liangcai CAO. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction. Optics and Lasers in Engineering, 130, 106090(2020).
[164] Yang CHEN, Xxuejuan WU, Linpeng LU et al. Single-shot lensfree on-chip quantitative phase microscopy with partially coherent LED illumination. Optics Letters, 47, 6061-6064(2022).
[165] Zhengzhong HUANG, P MEMMOLO, P FERRARO, et al. Dual-plane coupled phase retrieval for non-prior holographic imaging. PhotoniX, 3, 3(2022).
[166] R D L KRONIG. On the theory of dispersion of x-rays. Journal of the Optical Society of America, 12, 547-557(1926).
[167] H A KRAMERS. La diffusion de la lumière par les atomes. Transactions of Volta Centenary Congress, 2, 545-557(1927).
[168] L MARPLE. Computing the discrete-time “analytic” signal via FFT. IEEE Transactions on Signal Processing, 47, 2600-2603(1999).
[169] J OH, H HUGONNET, Y K PARK. Quantitative phase imaging via the holomorphic property of complex optical fields. Physical Review Research, 5, L022014(2023).
[170] Cheng SHEN, Mingshu LIANG, An PANalet. Non-iterative complex wave-field reconstruction based on Kramers-Kronig relations. Photonics Research, 9, 1003-1012(2021).
[171] K R LEE, J LIM, Y K PARK. Full-field quantitative X-ray phase nanotomography via space-domain Kramers-Kronig relations. Optica, 10, 407-414(2023).
[172] V MICÓ, Juanjuan ZHENG, J GARCIA et al. Resolution enhancement in quantitative phase microscopy. Advances in Optics and Photonics, 11, 135-214(2019).
[173] Peng GAO, Caojin YUAN. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review. Light: Advanced Manufacturing, 3, 6(2022).
[174] S A ALEXANDROV, T R HILLMAN, T GUTZLER et al. Synthetic aperture Fourier holographic optical microscopy. Physical Review Letters, 97, 168102(2006).
[175] Cheng ZHENG, Di JIN, Yanping HE et al. High spatial and temporal resolution synthetic aperture phase microscopy. Advanced Photonics, 2, 065002(2020).
[176] Xin CHEN, Suyi ZHONG, Yiwei HOU et al. Superresolution structured illumination microscopy reconstruction algorithms: a review. Light: Science & Applications, 12, 172(2023).
[177] Peng GAO, G PEDRINI, W OSTEN. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. Optics Letters, 38, 1328-1330(2013).
[178] Y PARK, W CHOI, Z YAQOOB et al. Speckle-field digital holographic microscopy. Optics Express, 17, 12285-12292(2009).
[179] Y CHOI, T D YANG, C FANG-YEN et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Physical Review Letters, 107, 023902(2011).
[180] Juanjuan ZHENG, G PEDRINI, Peng GAO et al. Autofocusing and resolution enhancement in digital holographic microscopy by using speckle illumination. Journal of Optics, 17, 085301(2015).
[181] A KUŚ, W KRAUZE, M KUJAWIŃSKA. Limited-angle, holographic tomography with optically controlled projection generation, 933007(2015).
[182] S SHIN, K KIM, J YOON et al. Active illumination using a digital micromirror device for quantitative phase imaging. Optics Letters, 40, 5407-5410(2015).
[183] P MEMMOLO, L MICCIO, F MEROLA et al. 3D morphometry of red blood cells by digital holography. Cytometry Part A, 85, 1030-1036(2014).
[184] M HABAZA, B GILBOA, Y ROICHMAN et al. Tomographic phase microscopy with 180 degrees rotation of live cells in suspension by holographic optical tweezers. Optics Letters, 40, 1881-1884(2015).
[185] P MÜLLER, M SCHÜRMANN, C J CHAN et al. Single-cell diffraction tomography with optofluidic rotation about a tilted axis, 95480U(2015).
[186] Zhengzhong HUANG, Feng YANG, Bo LIU et al. Aberration-free synthetic aperture phase microscopy based on alternating direction method. Optics and Lasers in Engineering, 160, 107301(2023).
[187] Zhengzhong HUANG, Liangcai CAO. Phase aberration separation for holographic microscopy by alternating direction sparse optimization. Optics Express, 31, 12520-12533(2023).
[188] M DEBAILLEUL, V GEORGES, B SIMON et al. High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples. Optics Letters, 34, 79-81(2009).
[189] S VERTU, J J DELAUNAY, I YAMADA et al. Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space. Central European Journal of Physics, 7, 22-31(2009).
[190] Yuchih LIN, Chaujern CHENG. Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography. Journal of Optics, 16, 065401(2014).
[191] S VERTU, J FLÜGGE, J J DELAUNAY et al. Improved and isotropic resolution in tomographic diffractive microscopy combining sample and illumination rotation. Central European Journal of Physics, 9, 969-974(2011).
[192] B SIMON, M DEBAILLEUL, M HOUKAL et al. Tomographic diffractive microscopy with isotropic resolution. Optica, 4, 460-463(2017).
[193] M CHEN, D REN, H Y LIU et al. Multi-layer Born multiple-scattering model for 3D phase microscopy. Optica, 7, 394-403(2020).
[194] O YASUHIKO, K TAKEUCHI. In-silico clearing approach for deep refractive index tomography by partial reconstruction and wave-backpropagation. Light: Science & Applications, 12, 101(2023).
[195] U S KAMILOV, I N PAPADOPOULOS, M H SHOREH et al. Learning approach to optical tomography. Optica, 2, 517-522(2015).
[196] J LIM, A B AYOUB, E E ANTOINE et al. High-fidelity optical diffraction tomography of multiple scattering samples. Light: Science & Applications, 8, 82(2019).
[197] A SABA, C GIGLI, A B AYOUB et al. Physics-informed neural networks for diffraction tomography. Advanced Photonics, 4, 066001(2021).
[198] M LEE, H HUGONNET, Y K PARK. Inverse problem solver for multiple light scattering using modified Born series. Optica, 9, 177-182(2022).
[199] T A PHAM, E SOUBIES, A AYOUB et al. Three-dimensional optical diffraction tomography with lippmann-schwinger model. IEEE Transactions on Computational Imaging, 6, 727-738(2020).
[200] S SONG, J KIM, T MOON et al. Polarization-sensitive intensity diffraction tomography. Light: Science & Applications, 12, 124(2023).
[201] A SABA, J LIM, A B AYOUB et al. Polarization-sensitive optical diffraction tomography. Optica, 8, 402-408(2021).
[202] Shuqi MU, Yingtong SHI, Yintong SONG et al. Multislice computational model for birefringent scattering. Optica, 10, 81-89(2023).
[203] A C BACHG, M HORSTHEMKE, B V SKRYABIN et al. Phenotypic analysis of Myo10 knockout (Myo10tm2/tm2) mice lacking full-length (motorized) but not brain-specific headless myosin X. Scientific Reports, 9, 597(2019).
[204] G POPESCU, T IKEDA, C BEST et al. Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. Journal of Biomedical Optics, 10, 060503(2005).
[205] Wei MA, Zhaocheng LIU, Z A KUDYSHEV et al. Deep learning for the design of photonic structures. Nature Photonics, 15, 77-90(2021).
[206] Y JANG, J JANG, Y K PARK. Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. Optics Express, 20, 9673-9681(2012).
[207] D J BARBER. Transmission electron microscopy: physics of image formation and microanalysis(1985).
[208] K M LANG, D A HITE, R W SIMMONDS et al. Conducting atomic force microscopy for nanoscale tunnel barrier forcharacterization. Review of Scientific Instruments, 75, 2726-2731(2004).
[209] G BINNING, H ROHRER, C GERBER et al. Surface studies by scanning tunneling microscopy(1982).
[210] Yanping HE, Qi SHAO, Shihchi CHEN et al. Characterization of two-photon photopolymerization fabrication using high-speed optical diffraction tomography. Additive Manufacturing, 60, 103293(2022).
[211] A GREENBAUM, Wei LUO, B KHADEMHOSSEINIEH et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Scientific Reports, 3, 1717(2013).
[212] H DEFIENNE, B NDAGANO, A LYONS et al. Polarization entanglement-enabled quantum holography. Nature Physics, 17, 591-597(2021).
[213] Y JO, H CHO, W S PARK et al. Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning. Nature Cell Biology, 23, 1329-1337(2021).
[214] S SHIN, J EUN, S S LEE et al. Tomographic measurement of dielectric tensors at optical frequency. Nature Materials, 21, 317-324(2022).
Get Citation
Copy Citation Text
Zhengzhong HUANG, Liangcai CAO. Digital Holography and Quantitative Phase Imaging: Advances and Prospects (Invtied)[J]. Acta Photonica Sinica, 2024, 53(9): 0911001
Category: Imaging Systems
Received: May. 16, 2024
Accepted: Aug. 23, 2024
Published Online: Nov. 13, 2024
The Author Email: CAO Liangcai (clc@tsinghua.edu.cn)