Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2306(2023)

Research Progress on Modification of Anodic Current Collectors for Sodium Metal Batteries

TANG Fang1... LIU Congcong1, HUANG Hongyang1, YAO Yu2, LIU Lin1, RUI Xianhong1 and YU Yan2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(91)

    [1] [1] CAO W Z, LI Q, YU X Q, et al. Controlling Li deposition below the interface[J]. eScience, 2022, 2(1): 47-78.

    [2] [2] CHEN A L, SHANG N, OUYANG Y, et al. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes[J]. eScience, 2022, 2(2): 192-200.

    [3] [3] LEE B, PAEK E, MITLIN D, et al. Sodium metal anodes: emerging solutions to dendrite growth[J]. Chem Rev, 2019, 119(8): 5416-5460.

    [7] [7] LI P, KIM H, MING J, et al. Quasi-compensatory effect in emerging anode-free lithium batteries[J]. eScience, 2021, 1(1): 3-12.

    [8] [8] LIU Y, ZHAI Y P, XIA Y Y, et al. Recent progress of porous materials in lithium-metal batteries[J]. Small Struct, 2021, 2(5): 2000118.

    [12] [12] WANG J, MA Q, SUN S, et al. Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth[J]. eScience, 2022, 2(6): 655-665.

    [13] [13] YU X W, MANTHIRAM A. Recent advances in lithium-carbon dioxide batteries[J]. Small Struct, 2020, 1(2): 2000027.

    [15] [15] ZHANG C Z, WANG F, HAN J, et al. Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries[J]. Small Struct, 2021, 2(6): 2100009.

    [16] [16] ZHAO R, SUN N, XU B. Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries[J]. Small Struct, 2021, 2(12): 2100132.

    [17] [17] NI Q, YANG Y J, DU H S, et al. Anode-free rechargeable sodium-metal batteries[J]. Batteries, 2022, 8(12): 272.

    [18] [18] COHN A P, MURALIDHARAN N, CARTER R, et al. Anode-free sodium battery through in situ plating of sodium metal[J]. Nano Lett, 2017, 17(2): 1296-1301.

    [19] [19] FANG H Y, GAO S N, ZHU Z, et al. Recent progress and perspectives of sodium metal anodes for rechargeable batteries[J].Chem Res Chin Univ, 2021, 37(2): 189-199.

    [20] [20] XU X D, ZENG H L, HAN D Z, et al. Nitrogen and sulfur Co-doped graphene nanosheets to improve anode materials for sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(43): 37172-37180.

    [21] [21] ZHU H, WANG C Y, LI C Y, et al. Engineering capacitive contribution in nitrogen-doped carbon nanofiber films enabling high performance sodium storage[J]. Carbon, 2018, 130: 145-152.

    [22] [22] YUE L, XU W Y, LI K, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Appl Surf Sci, 2021, 546: 149168.

    [23] [23] BALOGUN M S, LUO Y, QIU W T, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98: 162-178.

    [24] [24] ZHANG T Y, RAN F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Adv Funct Mater, 2021, 31(17): 2010041.

    [25] [25] SONG K M, LIU C T, MI L W, et al. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries[J]. Small, 2021, 17(9): 1903194.

    [26] [26] ZHENG S M, TIAN Y R, LIU Y X, et al. Alloy anodes for sodium-ion batteries[J].Rare Met, 2021, 40(2): 272-289.

    [27] [27] LI M, LU J, JI X L, et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes[J]. Nat Rev Mater, 2020, 5(4): 276-294.

    [28] [28] LIU Q N, HU Z, LI W J, et al. Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?[J]. Energy Environ Sci, 2021, 14(1): 158-179.

    [29] [29] SUN Y, GUO S H, ZHOU H S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[J]. Energy Environ Sci, 2019, 12(3): 825-840.

    [30] [30] GENG P B, ZHENG S S, TANG H, et al. Transition metal sulfides based on graphene for electrochemical energy storage[J]. Adv Energy Mater, 2018, 8(15): 1703259.

    [31] [31] MA M Z, YAO Y, WU Y, et al. Progress and prospects of transition metal sulfides for sodium storage[J].Adv Fiber Mater, 2020, 2(6): 314-337.

    [32] [32] WEI C L, TAN L W, ZHANG Y C, et al. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes[J]. J Mater Sci Technol, 2022, 115: 156-165.

    [33] [33] CHAZALVIEL J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phys Rev A, 1990, 42(12): 7355-7367.

    [34] [34] ELY D R, GARCA R E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes[J]. J Electrochem Soc, 2013, 160(4): A662-A668.

    [35] [35] KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.

    [36] [36] HU Z, LIU Q N, CHOU S L, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries[J]. Adv Mater, 2017, 29(48): 1700606.

    [38] [38] ZHENG X Y, BOMMIER C, LUO W, et al. Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions[J]. Energy Storage Mater, 2019, 16: 6-23.

    [39] [39] ZHAO Y, ADAIR K R, SUN X L. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries[J]. Energy Environ Sci, 2018, 11(10): 2673-2695.

    [40] [40] WANG H, MATIOS E, LUO J M, et al. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries[J]. Chem Soc Rev, 2020, 49(12): 3783-3805.

    [41] [41] CUI J Y, WANG A X, LI G J, et al. Composite sodium metal anodes for practical applications[J]. J Mater Chem A, 2020, 8(31): 15399-15416.

    [42] [42] SHI L, ZHAO T S. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries[J]. J Mater Chem A, 2017, 5(8): 3735-3758.

    [43] [43] CHU C X, LI R, CAI F P, et al. Recent advanced skeletons in sodium metal anodes[J]. Energy Environ Sci, 2021, 14(8): 4318-4340.

    [44] [44] AN Y L, TIAN Y, WEI C L, et al. Dealloying: an effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage[J]. Nano Today, 2021, 37: 101094.

    [45] [45] CAO R G, MISHRA K, LI X L, et al. Enabling room temperature sodium metal batteries[J]. Nano Energy, 2016, 30: 825-830.

    [46] [46] LU Y Y, ZHANG Q, HAN M, et al. Stable Na plating/stripping electrochemistry realized by a 3D Cu current collector with thin nanowires[J]. Chem Commun, 2017, 53(96): 12910-12913.

    [47] [47] WANG T S, LIU Y C, LU Y X, et al. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts[J]. Energy Storage Mater, 2018, 15: 274-281.

    [48] [48] SUN J C, GUO C P, CAI Y J, et al. Dendrite-free and long-life Na metal anode achieved by 3D porous Cu[J]. Electrochim Acta, 2019, 309: 18-24.

    [49] [49] XU Y L, MENON A S, HARKS P P R M L, et al. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes[J]. Energy Storage Mater, 2018, 12: 69-78.

    [50] [50] LIU S, TANG S, ZHANG X Y, et al. Porous Al current collector for dendrite-free Na metal anodes[J]. Nano Lett, 2017, 17(9): 5862-5868.

    [51] [51] TANG F, XIA R Q, CHEN D, et al. Rapid and reversible Na deposition onto Al nanosheet arrays[J]. J Energy Chem, 2022, 74: 1-7.

    [52] [52] YANG S N, CHENG Y, XIAO X, et al. Development and application of carbon fiber in batteries[J]. Chem Eng J, 2020, 384: 123294.

    [53] [53] YAN K, ZHAO S Q, ZHANG J Q, et al. Dendrite-free sodium metal batteries enabled by the release of contact strain on flexible and sodiophilic matrix[J]. Nano Lett, 2020, 20(8): 6112-6119.

    [54] [54] YU Y K, WANG Z Y, HOU Z, et al. 3D printing of hierarchical graphene lattice for advanced Na metal anodes[J]. ACS Appl Energy Mater, 2019, 2(5): 3869-3877.

    [55] [55] YAN J, ZHI G, KONG D Z, et al. 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode[J]. J Mater Chem A, 2020, 8(38): 19843-19854.

    [56] [56] SUN Z W, YE Y D, ZHU J W, et al. Regulating sodium deposition through gradiently-graphitized framework for dendrite-free Na metal anode[J]. Small, 2022, 18(18): 2107199.

    [57] [57] ZHANG Q, LU Y Y, ZHOU M, et al. Achieving a stable Na metal anode with a 3D carbon fibre scaffold[J]. Inorg Chem Front, 2018, 5(4): 864-869.

    [58] [58] GO W, KIM M H, PARK J, et al. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes[J]. Nano Lett, 2019, 19(3): 1504-1511.

    [59] [59] BAO C Y, WANG B, XIE Y, et al. Sodiophilic decoration of a three-dimensional conductive scaffold toward a stable Na metal anode[J]. ACS Sustainable Chem Eng, 2020, 8(14): 5452-5463.

    [60] [60] WANG B Y, JIANG T T, HOU L J, et al. N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode[J]. Solid State Ion, 2021, 368: 115711.

    [61] [61] CHU C X, WANG N N, LI L L, et al. Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes[J]. Energy Storage Mater, 2019, 23: 137-143.

    [62] [62] LIU B, LEI D N, WANG J, et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode[J].Nano Res, 2020, 13(8): 2136-2142.

    [63] [63] CUI X Y, WANG Y J, WU H D, et al. A carbon foam with sodiophilic surface for highly reversible, ultra-long cycle sodium metal anode[J]. Adv Sci, 2021, 8(2): 2003178.

    [64] [64] LI T J, SUN J C, GAO S Z, et al. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure[J]. Adv Energy Mater, 2021, 11(7): 2003699.

    [65] [65] PARK S, JIN H J, YUN Y S. Effects of carbon-based electrode materials for excess sodium metal anode engineered rechargeable sodium batteries[J]. ACS Sustainable Chem Eng, 2020, 8(48): 17697-17706.

    [66] [66] ZHENG Z J, ZENG X X, YE H, et al. Nitrogen and oxygen Co-doped graphitized carbon fibers with sodiophilic-rich sites guide uniform sodium nucleation for ultrahigh-capacity sodium-metal anodes[J]. ACS Appl Mater Interfaces, 2018, 10(36): 30417-30425.

    [67] [67] ZHANG Z G, LI L, ZHU Z C, et al. Homogenous sdiophilic MoS2/nitrogen-doped carbon nanofibers to stabilize sodium deposition for sodium metal batteries[J]. Energy Stor Mater, 2022, 53: 363-370.

    [68] [68] HE X, JIN S, MIAO L C, et al. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes[J]. Angew Chem Int Ed, 2020, 59(38): 16705-16711.

    [69] [69] WANG Z X, HUANG Z X, WANG H, et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity[J]. ACS Nano, 2022, 16(6): 9105-9116.

    [70] [70] XIA X M, DU C F, ZHONG S E, et al. Homogeneous Na deposition enabling high-energy Na-metal batteries[J]. Adv Funct Materials, 2022, 32(10): 2110280.

    [71] [71] YOON H J, KIM N R, JIN H J, et al. Macroporous catalytic carbon nanotemplates for sodium metal anodes[J]. Adv Energy Mater, 2018, 8(6): 1701261.

    [72] [72] XU Z, GUO Z Y, MADHU R, et al. Homogenous metallic deposition regulated by defect-rich skeletons for sodium metal batteries[J]. Energy Environ Sci, 2021, 14(12): 6381-6393.

    [73] [73] QIU R X, ZHAO S, JU Z J, et al. Sodiophilic skeleton based on the packing of hard carbon microspheres for stable sodium metal anode without dead sodium[J]. J Energy Chem, 2022, 73: 400-406.

    [74] [74] ZHENG X Y, LI P, CAO Z, et al. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers[J]. Small, 2019, 15(41): 1902688.

    [75] [75] MUBARAK N, REHMAN F, WU J X, et al. Morphology, chemistry, performance trident: insights from hollow, mesoporous carbon nanofibers for dendrite-free sodium metal batteries[J]. Nano Energy, 2021, 86: 106132.

    [76] [76] YANG S N, LI Y T, DU H X, et al. Copper nanoparticle-modified carbon nanofiber for seeded zinc deposition enables stable Zn metal anode[J]. ACS Sustainable Chem Eng, 2022, 10(38): 12630-12641.

    [77] [77] BAO C Y, WANG B, LIU P, et al. Solid electrolyte interphases on sodium metal anodes[J]. Adv Funct Mater, 2020, 30(52): 2004891.

    [78] [78] YANG H Y, ZHANG L M, WANG H, et al. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode[J]. J Colloid Interface Sci, 2022, 611: 317-326.

    [79] [79] WU J X, ZOU P C, IHSAN-UL-HAQ M, et al. Sodium batteries: sodiophilically graded gold coating on carbon skeletons for highly stable sodium metal anodes (small 40/2020)[J]. Small, 2020, 16(40): 2070223.

    [80] [80] WANG H, BAI W L, WANG H, et al. 3D printed Au/rGO microlattice host for dendrite-free sodium metal anode[J]. Energy Storage Mater, 2023, 55: 631-641.

    [81] [81] WANG Z H, ZHANG X L, ZHOU S Y, et al. Lightweight, thin, and flexible silver nanopaper electrodes for high-capacity dendrite-free sodium metal anodes[J]. Adv Funct Mater, 2018, 28(48): 1804038.

    [82] [82] TIAN B F, HUANG Z X, YANG H Y, et al. Sodiophilic silver nanoparticles anchoring on vertical graphene modified carbon cloth for longevous sodium metal anodes[J].Ionics, 2022, 28(10): 4641-4651.

    [83] [83] LEE K, LEE Y J, LEE M J, et al. A 3D hierarchical host with enhanced sodiophilicity enabling anode-free sodium-metal batteries[J]. Adv Mater, 2022, 34(14): 2109767.

    [84] [84] WANG H, MATIOS E, WANG C L, et al. Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes[J]. J Mater Chem A, 2019, 7(41): 23747-23755.

    [85] [85] XIE Y Y, HU J X, HAN Z X, et al. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries[J]. Energy Storage Mater, 2020, 30: 1-8.

    [86] [86] LI Y J, XU P, MOU J R, et al. Single cobalt atoms decorated N-doped carbon polyhedron enabled dendrite-free sodium metal anode[J]. Small Methods, 2021, 5(11): 2100833.

    [87] [87] LI X, YE W B, XU P, et al. An encapsulation-based sodium storage via Zn-single-atom implanted carbon nanotubes[J]. Adv Mater, 2022, 34(31): 2202898.

    [88] [88] XIONG W S, JIANG Y, XIA Y, et al. A robust 3D host for sodium metal anodes with excellent machinability and cycling stability[J]. Chem Commun, 2018, 54(68): 9406-9409.

    [89] [89] LI Y T, YANG S N, DU H X, et al. A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery[J]. J Mater Chem A, 2022, 10(27): 14399-14410.

    [90] [90] ZHU X L, WANG Y, WANG W Y, et al. Stable sodium metal anodes enabled by an in situ generated mixed-ion/electron-conducting interface[J]. Chem Eng J, 2022, 446: 136917.

    [91] [91] ZHANG L, ZHU X L, WANG G Y, et al. Bi nanoparticles embedded in 2D carbon nanosheets as an interfacial layer for advanced sodium metal anodes[J]. Small, 2021, 17(12): 2007578.

    [92] [92] WANG G Y, ZHANG Y, GUO B K, et al. Core-shell C@Sb nanoparticles as a nucleation layer for high-performance sodium metal anodes[J]. Nano Lett, 2020, 20(6): 4464-4471.

    [93] [93] WANG G Y, YU F F, ZHANG Y, et al. 2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium metal anodes with a high utilization[J]. Nano Energy, 2021, 79: 105457.

    [94] [94] CHEN Q W, ZHANG T X, HOU Z, et al. Large-scale sodiophilic/buffered alloy architecture enables deeply cyclable Na metal anodes[J]. Chem Eng J, 2022, 433: 133270.

    [95] [95] CHEN Q L, LIU B, ZHANG L, et al. Sodiophilic Zn/SnO2 porous scaffold to stabilize sodium deposition for sodium metal batteries[J]. Chem Eng J, 2021, 404: 126469.

    [96] [96] CHEN Q W, HOU Z, SUN Z Z, et al. Polymer-inorganic composite protective layer for stable Na metal anodes[J]. ACS Appl Energy Mater, 2020, 3(3): 2900-2906.

    [97] [97] HU X F, MATIOS E, ZHANG Y W, et al. Enabling stable sodium metal cycling by sodiophilic interphase in a polymer electrolyte system[J]. J Energy Chem, 2021, 63: 305-311.

    [98] [98] TANG S, QIU Z, WANG X Y, et al. A room-temperature sodium metal anode enabled by a sodiophilic layer[J]. Nano Energy, 2018, 48: 101-106.

    Tools

    Get Citation

    Copy Citation Text

    TANG Fang, LIU Congcong, HUANG Hongyang, YAO Yu, LIU Lin, RUI Xianhong, YU Yan. Research Progress on Modification of Anodic Current Collectors for Sodium Metal Batteries[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2306

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 18, 2023

    Accepted: --

    Published Online: Oct. 7, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics