Acta Photonica Sinica, Volume. 51, Issue 10, 1032002(2022)
Optimal Control of Isolated Attosecond Pulse Generation in an Ar Crystal(Invited)
[1] P M PAUL, E S TOMA, P BREGER et al. Observation of a train of attosecond pulses from high harmonic generation. Science, 292, 1689-1692(2001).
[2] Hao TENG, Xinkui HE, Kun ZHAO et al. Attosecond laser station. Chinese Physics B, 27, 074203(2018).
[3] P AGOSTINI, L F DIMAURO. The physics of attosecond light pulses. Reports on Progress in Physics, 67, 813(2004).
[4] P CORKUM, F KRAUSZ. Attosecond science. Nature Physics, 3, 381-387(2007).
[5] F KRAUSZ, M IVANOV. Attosecond physics. Reviews of Modern Physics, 81, 163(2009).
[6] J DURIS, S LI, T DRIVER et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nature Photonics, 14, 30-36(2020).
[7] M HENTSCHEL, R KIENBERGER, C SPIELMANN et al. Attosecond metrology. Nature, 414, 509-513(2001).
[8] F FERRARI, F CALEGARI, M LUCCHINI et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photonics, 4, 875-879(2010).
[9] T GAUMNITZ, A JAIN, Y PERTOT et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Optics Express, 25, 27506-27518(2017).
[10] Kun ZHAO, Qi ZHANG, M CHINI et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Optics Letters, 37, 3891-3893(2012).
[11] G SANSONE, E BENEDETTI, F CALEGARI et al. Isolated single-cycle attosecond pulses. Science, 314, 443-446(2006).
[12] E GOULIELMAKIS, M SCHULTZE, M HOFSTETTER et al. Single-cycle nonlinear optics. Science, 320, 1614-1617(2008).
[13] Jie LI, Xiaoming REN, Yanchun YIN et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nature Communications, 8, 1-5(2017).
[14] E J TAKAHASHI, P LAN, O D MUCKE et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nature Communications, 4, 1-9(2013).
[15] T HAMMOND, G BROWN, K VILLENEUVE D KIM et al. Attosecond pulses measured from the attosecond lighthouse. Nature, Photonics, 10, 171-175(2016).
[16] F FRANK, C ARRELL, T WITTING et al. Invited review article: technology for attosecond science. Review of Scientific Instruments, 83, 071101(2012).
[17] I SOLA, E MÉVEL, L ELOUGA et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Physics, 2, 319-322(2006).
[18] I P CHRISTOV, M M MURNANE, H C KAPTEYN. High-harmonic generation of attosecond pulses in the “single-cycle” regime. Physical Review Letters, 78, 1251(1997).
[19] R KIENBERGER, E GOULIELMAKIS, M UIBERACKER et al. Atomic transient recorder. Nature, 427, 817-821(2004).
[20] S GHIMIRE, A D DICHIARE, E SISTRUNK et al. Observation of high-order harmonic generation in a bulk crystal. Nature Physics, 7, 138-141(2011).
[21] T HIGUCHI, M I STOCKMAN, P HOMMELHOFF. Strong-field perspective on high-harmonic radiation from bulk solids. Physical Review Letters, 113, 213901(2014).
[22] Lei CUI, J ZHAO, Y J HU et al. Effect of different laser polarization direction on high order harmonic generation of N2 and H2. Applied Physics Letters, 89, 211103(2006).
[23] X X ZHOU, X M TONG, Z X ZHAO et al. Alignment dependence of high-order harmonic generation from N2 and O2 molecules in intense laser fields. Physical Review A, 72, 033412(2005).
[24] Yanyun TU, Xu SUN, Haizhong WU et al. Enhanced terahertz generation from the lithium niobate metasurface. Frontiers in Physics, 10, 883703(2022).
[25] G NDABASHIMIYE, S GHIMIRE, M WU et al. Solid-state harmonics beyond the atomic limit. Nature, 534, 520-523(2016).
[26] M A MARQUES, A CASTRO, G F BERTSCH et al. Octopus: a first-principles tool for excited electron-ion dynamics. Computer Physics Communications, 151, 60-78(2003).
[27] N TROULLIER, L N MARTINS. Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43, 1993(1991).
[28] J P PERDEW, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865(1996).
[29] F KOOTSTRA, P D BOEIJ, J SNIJDERS. Efficient real-space approach to time-dependent density functional theory for the dielectric response of nonmetallic crystals. The Journal of Chemical Physics, 112, 6517-6531(2000).
[30] N T MAITRA, I SOUZA, K BURKE. Current-density functional theory of the response of solids. Physical Review B, 68, 045109(2003).
[31] S SATO, K YABANA, Y SHINOHARA et al. Numerical pump-probe experiments of laser-excited silicon in nonequilibrium phase. Physical Review B, 89, 064304(2014).
[32] T OTOBE. First-principle description for the high-harmonic generation in a diamond by intense short laser pulse. Journal of Applied Physics, 111, 093112(2012).
[33] Xiaoqin ZHANG, Feng WANG, Fengshou ZHANG et al. Control of the hyperbolic dispersion of dielectrics by an ultrashort laser pulse. Physical Review B, 97, 014310(2018).
[34] M MURAKAMI. High harmonic generation by short laser pulses: time-frequency behavior and applications to attophysics(2006).
[35] K SCHAFER, B YANG, L DIMAURO et al. Above threshold ionization beyond the high harmonic cutoff. Physical Review Letters, 70, 1599(1993).
[36] P B CORKUM. Plasma perspective on strong field multiphoton ionization. Physical Review Letters, 71, 1994(1993).
[37] G VAMPA, B G GHAMSARI, M S SIADAT et al. Plasmon-enhanced high-harmonic generation from silicon. Nature Physics, 13, 659-662(2017).
[38] M B GAARDE, J L TATE, K J SCHAFER. Macroscopic aspects of attosecond pulse generation. Journal of Physics B: Atomic, Molecular and Optical Physics, 41, 132001(2018).
Get Citation
Copy Citation Text
Suna PANG, Feng WANG. Optimal Control of Isolated Attosecond Pulse Generation in an Ar Crystal(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1032002
Category: Ultrafast Optics
Received: Apr. 14, 2022
Accepted: May. 23, 2022
Published Online: Nov. 30, 2022
The Author Email: PANG Suna (3120195765@bit.edu.cn)