Bulletin of the Chinese Ceramic Society, Volume. 43, Issue 8, 3053(2024)

Synthesis of Silicon / Silicon Carbide Nanocomposites from Silica Fume and Investigation of Its Lithium Storage Performance

HUANG Haiming1...2,3, DU Jing1,2,3, XIE Jieyang1,2,3, CHEN Qingze1,2,3,*, and ZHU Runliang1,23 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(40)

    [1] [1] WANG C Y, YANG C P, ZHENG Z J. Toward practical high-energy and high-power lithium battery anodes: present and future[J]. Advanced Science, 2022, 9(9): e2105213.

    [2] [2] BERCKMANS G, MESSAGIE M, SMEKENS J, et al. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030[J]. Energies, 2017, 10(9): 1314.

    [3] [3] ZHU B, WANG X Y, YAO P C, et al. Towards high energy density lithium battery anodes: silicon and lithium[J]. Chemical Science, 2019, 10(30): 7132-7148.

    [4] [4] MAJEED M K, IQBAL R, HUSSAIN A, et al. Silicon-based anode materials for lithium batteries: recent progress, new trends, and future perspectives[J]. Critical Reviews in Solid State and Materials Sciences, 2024, 49(2): 221-253.

    [5] [5] GE M Z, CAO C Y, BIESOLD G M, et al. Recent advances in silicon-based electrodes: from fundamental research toward practical applications[J]. Advanced Materials, 2021, 33(16): e2004577.

    [6] [6] LUO J Y, ZHAO X, WU J S, et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes[J]. The Journal of Physical Chemistry Letters, 2012, 3(13): 1824-1829.

    [7] [7] ZHANG J M, TANG J J, ZHOU X Y, et al. Optimized porous Si/SiC composite spheres as high-performance anode material for lithium-ion batteries[J]. ChemElectroChem, 2019, 6(2): 450-455.

    [8] [8] SALAH M, HALL C, FRANCIS C, et al. Binary silicon-based thin-film anodes for lithium-ion batteries: a review[J]. Journal of Power Sources, 2022, 520: 230871.

    [9] [9] HE Z Y, XIAO Z X, YUE H J, et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes[J]. Advanced Functional Materials, 2023, 33(26): 2300094.

    [10] [10] LI P, KIM H, MYUNG S T, et al. Diverting exploration of silicon anode into practical way: a review focused on silicon-graphite composite for lithium ion batteries[J]. Energy Storage Materials, 2021, 35: 550-576.

    [11] [11] CABELLO M, GUCCIARDI E, HERRN A, et al. Towards a high-power Si@graphite anode for lithium ion batteries through a wet ball milling process[J]. Molecules, 2020, 25(11): 2494.

    [12] [12] YANG H, LIN S Y, CHENG A, et al. Recent advances in ball-milling-based silicon anodes for lithium-ion batteries[J]. Energies, 2023, 16(7): 3099.

    [13] [13] ZHAO Y, ZHANG L, LIU J, et al. Atomic/molecular layer deposition for energy storage and conversion[J]. Chemical Society Reviews, 2021, 50(6): 3889-3956.

    [14] [14] GUPTA B, HOSSAIN M A, RIAZ A, et al. Recent advances in materials design using atomic layer deposition for energy applications[J]. Advanced Functional Materials, 2022, 32(3): 2109105.

    [15] [15] LUO J, MA B J, PENG J, et al. Modified chestnut-like structure silicon carbon composite as anode material for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10415-10424.

    [16] [16] NGO D T, LE H T T, PHAM X M, et al. Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32790-32800.

    [17] [17] YU C H, CHEN X, XIAO Z X, et al. Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions[J]. Nano Letters, 2019, 19(8): 5124-5132.

    [18] [18] FURQUAN M, JANGID M K, KHATRIBAIL A R, et al. Mechanical and electrochemical stability improvement of SiC-reinforced silicon-based composite anode for Li-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(12): 12613-12626.

    [19] [19] MA Z P, ZHU J P, ZENG F H, et al. Structural control and optimization schemes of silicon-based anode materials[J]. Energy Technology, 2023, 11(6): 2201496.

    [20] [20] KHAN M I, SIDDIQUE R. Utilization of silica fume in concrete: review of durability properties[J]. Resources, Conservation and Recycling, 2011, 57: 30-35.

    [21] [21] SIDDIQUE R. Utilization of silica fume in concrete: review of hardened properties[J]. Resources, Conservation and Recycling, 2011, 55(11): 923-932.

    [22] [22] VIJAYAN D S, DEVARAJAN P, SIVASURIYAN A. A review on eminent application and performance of nano based silica and silica fume in the cement concrete[J]. Sustainable Energy Technologies and Assessments, 2023, 56: 103105.

    [23] [23] ZHANG X H, QIU X Y, KONG D B, et al. Silicene flowers: a dual stabilized silicon building block for high-performance lithium battery anodes[J]. ACS Nano, 2017, 11(7): 7476-7484.

    [24] [24] LIU Q, JI Y X, YIN X M, et al. Magnesiothermic reduction improved route to high-yield synthesis of interconnected porous Si@C networks anode of lithium ions batteries[J]. Energy Storage Materials, 2022, 46: 384-393.

    [25] [25] DYE S, PHILLIPS D, WOODFORD D, et al. Gravimetric determination of free carbon and silicon carbide in silica fume[J]. Talanta, 1993, 40(6): 909-912.

    [26] [26] FLETCHER A, PHILLIPS D, BARROW I. Determination of crystalline silica in silica fume[J]. Talanta, 1994, 41(10): 1663-1668.

    [27] [27] BARATI M, SARDER S, MCLEAN A, et al. Recovery of silicon from silica fume[J]. Journal of Non Crystalline Solids, 2011, 357(1): 18-23.

    [28] [28] DU J, ZHU R L, CHEN Q Z, et al. In situ synthesis of stable silicon carbide-reinforced silicon nanosheets from organoclay for high-performance lithium-ion battery anodes[J]. Applied Surface Science, 2023, 617: 156566.

    [29] [29] HIMPSEL F J, MCFEELY F R, TALEB-IBRAHIMI A, et al. Microscopic structure of the SiO2/Si interface[J]. Physical Review B, Condensed Matter, 1988, 38(9): 6084-6096.

    [30] [30] SHIMODA K, PARK J S, HINOKI T, et al. Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basic powder characteristics[J]. Applied Surface Science, 2007, 253(24): 9450-9456.

    [31] [31] NNEBY C, PANTANO C G. Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997, 15(3): 1597-1602.

    [32] [32] HIJIKATA Y, YAGUCHI H, YOSHIKAWA M, et al. Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films[J]. Applied Surface Science, 2001, 184(1/2/3/4): 161-166.

    [33] [33] NGUYEN T D, KELLY J A, HAMAD W Y, et al. Magnesiothermic reduction of thin films: towards semiconducting chiral nematic mesoporous silicon carbide and silicon structures[J]. Advanced Functional Materials, 2015, 25(14): 2175-2181.

    [34] [34] SU J J, GAO B, CHEN Z D, et al. Large-scale synthesis and mechanism of β-SiC nanoparticles from rice husks by low-temperature magnesiothermic reduction[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6600-6607.

    [35] [35] ENTWISTLE J, RENNIE A, PATWARDHAN S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond[J]. Journal of Materials Chemistry A, 2018, 6(38): 18344-18356.

    [36] [36] GAO H Y, HU Z, ZHANG K, et al. Intergrown Li2FeSiO4·LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries[J]. Chemical Communications, 2013, 49(29): 3040-3042.

    [37] [37] HU Z, ZHANG K, GAO H Y, et al. Li2MnSiO4@C nanocomposite as a high-capacity cathode material for Li-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(40): 12650-12656.

    [38] [38] DUAN W C, ZHU Z Q, LI H, et al. Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(23): 8668-8675.

    [39] [39] GAO H Y, JIAO L F, PENG W X, et al. Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site[J]. Electrochimica Acta, 2011, 56(27): 9961-9967.

    [40] [40] YAO Y F, HE Z Y, XU X Y, et al. Upgraded lithium storage performance of defect-rich Si@C anode assisted by Fe2O3-induced pseudocapacitance[J]. Electrochimica Acta, 2023, 455: 142430.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Haiming, DU Jing, XIE Jieyang, CHEN Qingze, ZHU Runliang. Synthesis of Silicon / Silicon Carbide Nanocomposites from Silica Fume and Investigation of Its Lithium Storage Performance[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(8): 3053

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 15, 2024

    Accepted: --

    Published Online: Oct. 10, 2024

    The Author Email: Qingze CHEN (chenqingze@gig.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics