Chinese Journal of Quantum Electronics, Volume. 32, Issue 5, 539(2015)
Design of improved hyperspectral image classification scheme based on weighted fuzzy C means algorithm
[6] [6] Yang J M, Yu P T, Kuo B C. A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data[J]. IEEE Trans. Geosci. Remote Sens., 2010, 48(3): 1279-1293.
[7] [7] Mojaradi B, Abrishami-Moghaddam H, Zoej M, et al. Dimensionality reduction of hyperspectral data via spectral feature extraction[J]. IEEE Trans. Geosci. Remote Sens., 2009, 47(7): 2091-2105.
[8] [8] Lin K P, Chen M S. On the design of the privacy preserving SVM classifier[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(11): 1704-1717.
[9] [9] Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. IEEE Trans. Fuzzy Systems, 1995, 3(4): 370-379.
[11] [11] Bezdek J C. A convergence theorem for the fuzzy ISODATA clustering algorithm[J]. IEEE Trans. Pattern Analysis Machine Intelligence, 1980, 2(1): 1-8.
[12] [12] Hathaway R J, Bezdek J C. Local convergence of the fuzzy c-means algorithms[J]. Pattern Recognition, 1986, 19(6): 477-480.
[13] [13] Landgrebe D A. Signal Theory Methods in Multispectral Remote Sensing[M]. New York: Wiley, 2003.
Get Citation
Copy Citation Text
MA Huan, JING Zhiyong, CHEN Ming, ZHANG Jianwei. Design of improved hyperspectral image classification scheme based on weighted fuzzy C means algorithm[J]. Chinese Journal of Quantum Electronics, 2015, 32(5): 539
Category:
Received: Feb. 6, 2015
Accepted: --
Published Online: Oct. 22, 2015
The Author Email: Huan MA (mahy-aa@163.com)