Journal of Applied Optics, Volume. 44, Issue 1, 93(2023)

Particles image detection based on Mask R-CNN combined with edge segmentation

Xuan LI... Zhou YANG, Xinyu TAO, Xiaojie WANG, Xutao MO and Xianshan HUANG* |Show fewer author(s)
Author Affiliations
  • School of Mathematics and Physics, Anhui University of Technology, Ma'anshan 243002, China
  • show less
    Figures & Tables(13)
    Structure diagram of Mask R-CNN
    Structure diagram of Denseblock module and channel attention module
    Structure diagram of DenseAttention network
    Structure diagram of Mask R-CNN model of improved mask
    Schematic diagram of image acquisition
    Loss curves of training process of different backbone networks
    Detection effect of different backbone networks
    Size distribution of different networks detection on test set
    • Table 1. Detection accuracy of different backbone networks

      View table
      View in Article

      Table 1. Detection accuracy of different backbone networks

      主干网络样本集1AP样本集2AP样本集3AP网络权重大小/MB
      ResNet0.9724537290.965826700.968745449106
      DenseNet0.9537215190.929235140.95206029729.5
      DenseAttention0.9761174500.944812880.96388169030.8
    • Table 2. IoU comparison before and after improvement

      View table
      View in Article

      Table 2. IoU comparison before and after improvement

      样本集ResNet原模型DenseNet原模型DenseAtt原模型ResNet改进模型DenseNet改进模型DenseAtt改进模型
      样本集10.7148100.6626480.7146380.8725220.8490030.866694
      样本集20.6841410.6549700.6985840.8418690.8367590.843355
      样本集30.7187320.6695500.7103280.8526130.8370460.833949
    • Table 3. Mean detection time of different networks s

      View table
      View in Article

      Table 3. Mean detection time of different networks s

      样本集ResNet原模型DenseNet原模型DenseAtt原模型ResNet改进模型DenseNet改进模型DenseAtt改进模型
      样本集10.5089240.5560570.5584420.6887020.7035270.726827
      样本集20.6084560.6343760.6636170.9343230.9307220.991752
      样本集30.6591900.6775580.6802010.9260700.9357170.951665
    • Table 4. Statistical standard deviation of particles accumulative proportion error of different methods

      View table
      View in Article

      Table 4. Statistical standard deviation of particles accumulative proportion error of different methods

      方法样本集1样本集2样本集3
      Canny0.2700280.2434270.154735
      Watershed0.2236090.2076370.155501
      UNet0.2564730.2288260.183079
      UNet+Watershed0.3000050.2610200.220387
      ResNet+原模型0.1580700.1532850.120736
      DenseNet+原模型0.3689560.3484260.255952
      DenseAtt+原模型0.1498850.1433150.109891
      ResNet+改进掩膜0.0138070.0255670.012105
      DenseNet+改进掩膜0.0402480.0405120.024433
      DenseAtt+改进掩膜0.0182500.0308760.006074
    • Table 5. Correlation of size distribution between different methods

      View table
      View in Article

      Table 5. Correlation of size distribution between different methods

      方法样本集1样本集2样本集3
      Canny0.1999980.4399370.642170
      Watershed0.2856120.5421200.627450
      UNet0.1285550.3443680.438553
      UNet+Watershed0.0872320.2875990.278089
      ResNet+原模型0.6116060.5749750.694612
      DenseNet+原模型0.4315830.4947010.610243
      DenseAtt+原模型0.6408690.6488560.780750
      ResNet+改进掩膜0.9351480.8943780.983772
      DenseNet+改进掩膜0.7831570.8607520.969065
      DenseAtt+改进掩膜0.9405630.9400950.991209
    Tools

    Get Citation

    Copy Citation Text

    Xuan LI, Zhou YANG, Xinyu TAO, Xiaojie WANG, Xutao MO, Xianshan HUANG. Particles image detection based on Mask R-CNN combined with edge segmentation[J]. Journal of Applied Optics, 2023, 44(1): 93

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 22, 2022

    Accepted: --

    Published Online: Feb. 22, 2023

    The Author Email: HUANG Xianshan (Huangxs@ahut.edu.cn)

    DOI:10.5768/JAO202344.0102005

    Topics