Infrared and Laser Engineering, Volume. 51, Issue 6, 20220055(2022)

Recent advances in nanosecond-pulsed Ytterbium-doped all-fiber lasers

Yan Qu1...2, Chaoyu Ning1,3,4, Shuzhen Zou1,4, Haijuan Yu1,4, Xuechun Chen1,3,4, Shuang Xu1,3,4, Jiexi Zuo1,3,4, Shifei Han1,3,4, Xinyao Li1,3,4, and Xuechun Lin14 |Show fewer author(s)
Author Affiliations
  • 1Laboratory of All-Solid-State Light Sources, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Beijing Advanced Materials and New Energy Technology Development Center, Beijing 100094, China
  • 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101407, China
  • 4Beijing Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing, Beijing 100083, China
  • show less
    Figures & Tables(15)
    Structure diagram of 1120 nm Q-switched fiber laser[22]
    Active Q-switched ring cavity fiber laser. (a) Schematic diagram of structure; (b) Change of pulse width and pulse energy at different repetition frequencies; (c) Spectra, illustrated in logarithmic coordinates[24]
    Nanosecond pulse obtained by EOIM modulated continuous wave[27]
    Passive Q-switched laser with Ytterbium-doped fiber as saturable absorber[34]
    Fiber laser with SMS structure[36]
    Structure diagram of passive Q-switched fiber laser with double cavity compound structure[38]
    Schematic diagram of gain-switched nanosecond pulse fiber laser[40]
    Low repetition rate nanosecond pulse amplifier and its synchronous pulse pumping technology. (a) Schematic diagram of all-fiber MOPA structure; (b) Time series of pump pulses at different amplification stages
    Nearly kilowatt average power laser amplifier. (a) Schematic of structure; (b) Curve of average power vs. pump power; (c) Spectral pattern[54]
    All-fiber linearly polarized MOPA laser system. (a) Structural diagram; (b) 6 spots randomly collected during the maximum power output, indicating that TMI appears [27]
    All-fiber sub-nanosecond laser amplifier and its output characteristics. (a) Schematic of structure; (b) Changes of beam quality at 976 nm pumping wavelength; (c) Changes of beam quality at 915 nm pumping wavelength. The improvement of beam quality shows that TMI is suppressed[56]
    Output characteristics of fiber amplifier. (a) Amplifier construction with an average power of 300 W; (b) Curve of average power vs. pump power; (c) Display of laser cleaning[61]
    1000 W all-fiber laser system [63]
    • Table 1. Research progress of all-fiber nanosecond laser oscillator

      View table
      View in Article

      Table 1. Research progress of all-fiber nanosecond laser oscillator

      MeasureYear[Ref.]Average powerPulse durationRepetition ratePulse energyPeak power
      Active Q-switching2013[22]111.0 mW140 ns1 kHz111.0 μJ0.8 kW
      291.0 mW181 ns10 kHz29.1 μJ0.2 kW
      2014[23]11.3 mW40 ns100 kHz113.0 nJ2.8 W
      2019[24]1.3 W9 ns175 kHz7.4 μJ0.8 kW
      Passive Q-switching2010[42]9.9 mW430 ns9 kHz1.1 μJ2.6 W
      2011[28]12.0 mW70 ns257 kHz46.0 nJ0.7 W
      2013[38]1.8 W45 ns30 kHz62.0 μJ1.4 kW
      2014[35]14.0 W140 ns100 kHz141.0 μJ1.0 kW
      2015[36]9.2 W100 ns100 kHz92.0 μJ0.9 kW
      2015[39]6.0 W143 ns12 kHz484.0 μJ3.4 kW
      21.0 W49 ns114 kHz187.0 μJ3.8 kW
      Gain-switching2019[40]30.0 W38 ns1 MHz30.0 μJ0.8 kW
    • Table 2. Research progress of all-fiber nanosecond pulse laser amplifier

      View table
      View in Article

      Table 2. Research progress of all-fiber nanosecond pulse laser amplifier

      Year[Ref.]Active fiberAverage powerPulse durationRepetition ratePulse energyPeak power
      2010[76]Dcore=20 μm 21.07 W100 ns200 kHz0.1 mJ1 kW
      2012[77]Dcore=30 μm 300.8 W8 ns10 MHz30 μJ3.75 kW
      2012[53]Dcore=30 μm 505 W6 ns10 MHz50.5 μJ7.9 kW
      2013[50]Dcore=200 μm 0.62 W12 ns20 Hz31 mJ2.58 MW
      2013[78]Dcore=30 μm 102 W14.9 ns100 kHz1.02 mJ68 kW
      2013[57]Dcore=50 μm 265 W500 ns25 kHz10.6 mJ21.2 kW
      2014[79]Dcore=30 μm 25.3 W0.223 ns100 MHz0.253 μJ1.13 kW
      2014[54]Dcore=30 μm 913 W3 ns10 MHz91.3 μJ28.6 kW
      2014[58]Dcore=300 μm 400 W12 ns10 kHz40 mJ3.5 MW
      2014[49]Dcore=50 μm 23 W3 ns10 kHz2.3 mJ697 kW
      2014[52]Dcore=30 μm 120 W0.62 ns26.3 MHz4.56 μJ7.35 kW
      2015[55]293 W3.5 ns20 MHz14.65 μJ3.9 kW
      2015[56]Dcore=30 μm 608 W0.81 ns10 MHz60.8 μJ128 kW
      2016[60]Dcore=20 μm 188 W101 ns40 kHz4.5 mJ46.5 kW
      2017[59]1500 W90 ns10 kHz150 mJ1.7 MW
      1150 W30 ns10 kHz115 mJ3.5 MW
      2018[61]Dcore=30 μm 302 W203 ns100 kHz3 mJ15 kW
      2018[80]Dcore=25 μm 189 W250 ns200 kHz0.95 mJ3.8 kW
      2018[27]Dcore=30 μm 466 W4 ns10 MHz46.6 μJ8.8 kW
      2019[62]Dcore=100 μm 526 W150 ns30 kHz17.5 mJ116 kW
      761 W280 ns60 kHz12.6 mJ45 kW
      2021[63]Dcore=100 μm 1000 W260 ns60 kHz16.7 mJ64 kW
    Tools

    Get Citation

    Copy Citation Text

    Yan Qu, Chaoyu Ning, Shuzhen Zou, Haijuan Yu, Xuechun Chen, Shuang Xu, Jiexi Zuo, Shifei Han, Xinyao Li, Xuechun Lin. Recent advances in nanosecond-pulsed Ytterbium-doped all-fiber lasers[J]. Infrared and Laser Engineering, 2022, 51(6): 20220055

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Jan. 18, 2022

    Accepted: --

    Published Online: Dec. 20, 2022

    The Author Email:

    DOI:10.3788/IRLA20220055

    Topics