Optics and Precision Engineering, Volume. 31, Issue 4, 543(2023)

Yolo v3-SPP real-time target detection system based on ZYNQ

Lili ZHANG, Zhen CHEN*, Yuxuan LIU, and Lele QU
Author Affiliations
  • College of Electronic and Information Engineering, Shenyang Aerospace University, Shenyang110000, China
  • show less
    References(16)

    [1] [1] 1唐悦, 吴戈, 朴燕. 改进的GDT-YOLOV3目标检测算法[J]. 液晶与显示, 2020, 35(8): 852-860. doi: 10.37188/yjyxs20203508.0852TANGY, WUG, PIAOY. Improved algorithm of GDT-YOLOV3 image target detection[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(8): 852-860.(in Chinese). doi: 10.37188/yjyxs20203508.0852

    [2] [2] 2范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学 精密工程, 2020, 28(5): 1152-1164.FANL L, ZHAOH W, ZHAOH Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Opt. Precision Eng., 2020, 28(5): 1152-1164.(in Chinese)

    [3] [3] 3鞠默然, 罗海波, 刘广琦, 等. 采用空间注意力机制的红外弱小目标检测网络[J]. 光学 精密工程, 2021, 29(4): 843-853. doi: 10.37188/OPE.20212904.0843JUM R, LUOH B, LIUG Q, et al. Infrared dim and small target detection network based on spatial attention mechanism[J]. Opt. Precision Eng., 2021, 29(4): 843-853.(in Chinese). doi: 10.37188/OPE.20212904.0843

    [4] [4] 4王宸, 张秀峰, 刘超, 等. 改进YOLOv3的轮毂焊缝缺陷检测[J]. 光学 精密工程, 2021, 29(8): 1942-1954. doi: 10.37188/OPE.20212908.1942WANGCH, ZHANGX F, LIUCH, et al. Detection method of wheel hub weld defects based on the improved YOLOv3[J]. Opt. Precision Eng., 2021, 29(8): 1942-1954.(in Chinese). doi: 10.37188/OPE.20212908.1942

    [5] WEI G J, HOU Y Z, CUI Q M et al. YOLO acceleration using FPGA architecture[C], 734-735(2019).

    [6] NAKAHARA H, YONEKAWA H, FUJII T et al. A lightweight YOLOv2: a binarized CNN with A parallel support vector regression for an FPGA[C], 31-40(27).

    [7] LI Z G, WANG J T. An improved algorithm for deep learning YOLO network based on Xilinx ZYNQ FPGA[C], 447-451(2020).

    [8] NGUYEN D T, NGUYEN T N, KIM H et al. A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27, 1861-1873(2019).

    [9] ADIONO T, PUTRA A, SUTISNA N et al. Low latency YOLOv3-tiny accelerator for low-cost FPGA using general matrix multiplication principle[C], 141890-141913(2021).

    [10] YOU J H, KIM Y K. Implementation of compressed YOLOv3-tiny on FPGA-SoC[C], 1-4(2020).

    [11] REDMON J, DIVVALA S, GIRSHICK R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [12] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).

    [15] ZHANG H B, JIANG J Q, FU Y H et al. Yolov3-tiny object detection SoC based on FPGA platform[C], 291-294(2021).

    [16] ZHANG S, CAO J, ZHANG Q et al. An FPGA-based reconfigurable CNN accelerator for YOLO[C], 74-78(2020).

    Tools

    Get Citation

    Copy Citation Text

    Lili ZHANG, Zhen CHEN, Yuxuan LIU, Lele QU. Yolo v3-SPP real-time target detection system based on ZYNQ[J]. Optics and Precision Engineering, 2023, 31(4): 543

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 2, 2022

    Accepted: --

    Published Online: Mar. 7, 2023

    The Author Email: Zhen CHEN (chenzhen_1996@qq.com)

    DOI:10.37188/OPE.20233104.0543

    Topics