Matter and Radiation at Extremes, Volume. 3, Issue 1, 12(2018)

Progress in particle-beam-driven inertial fusion research: Activities in Japan

Kazuhiko Horioka*
Author Affiliations
  • Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8502, Japan
  • show less
    References(95)

    [1] [1] G.W. Kuswa, Inertial confinement fusion with particle beams, IEEE Trans. Nucl. Sci. 24 (1977) 975-980.

    [2] [2] S. Kawasaki, A. Miyahara, System design of heavy ion fusion experiment, in: Proc. Third International Topical Conference on High- Power Electron and Ion Beam Research and Technology, 1979, pp. 465-472.

    [3] [3] S. Humphries Jr., Intense pulsed ion beams for fusion applications, Nucl. Fusion 20 (1980) 1549-1612.

    [4] [4] J.P. Vandevender, Light-ion beams for inertial confinement fusion, Nucl. Fusion 25 (1985) 1373.

    [5] [5] K. Imasaki, S. Miyamoto, S. Nakai, K. Nishihara, H. Takabe, et al., Inertial confinement fusion research with light ion beams at ILE, in: Plasma Physics and Controlled Nuclear Fusion Research 1986, IAEACN- 47/B-II-5, 1986, pp. 103-112.

    [6] [6] K. Yatsui, Y. Shimosaki, Y. Araki, K. Masugata, S. Kawata, et al., Inertial confinement fusion research with intense pulsed light ion beams, in: Plasma Physics and Controlled Nuclear Fusion Research 1986, IAEACN- 49/B-III-9, 1986, pp. 177-186.

    [7] [7] K. Kasuya, K. Horioka, T. Takahashi, A. Urai, M. Hijikawa, New type of pulsed ion source with cryogenic pulsed ion diode, Appl. Phys. Lett. 39 (1981) 887.

    [8] [8] K. Kasuya, K. Horioka, H. Yoneda, M. Funatsu, S. Saitoh, et al., Recent experimental results of cryogenic pulsed ion diode, in: Plasma Physics and Controlled Nuclear Fusion Research 1986, IAEA-CN-47/B-III-7, 1986, pp. 161-166.

    [9] [9] T. Aoki, K. Niu, Numerical experiment for focus of rotating and propagating LIB in Plasma IdQuasi-neutral approximation, Laser Part. Beams 6 (1988) 737-750.

    [10] [10] K. Niu, S. Kawata, Proposal of power plant by light ion beams fusion, Fusion Technol. 11 (1987) 365-373.

    [11] [11] K. Horioka, H.Yoneda, K. Kasuya, Acceleration gap behavior of flashovertype pulsed ion diode, IEEE Trans. Plasma Sci. 17 (1989) 793-796.

    [12] [12] S. Humphries Jr., Charged Particle Beams, John Wiley and Suns, Inc., 1990.

    [13] [13] C. Deutsch, Inertial confinement fusion driven by intense ion beams, Ann. Phys. Fr. 11 (1986) 1-111.

    [14] [14] B.G. Logan, F. Bieniosek, C. Celata, J. Coleman, W.G. Greenway, et al., Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion, Nucl. Instr. Methods Phys. Res. A 577 (2007) 1-7.

    [15] [15] P.A. Seidl, J.J. Barnard, A. Faltens, A. Friedman, Research and development toward heavy ion driven inertial fusion energy, Phys. Rev. Special Top e Accel. Beams 16 (2013) 024701.

    [16] [16] J.J. Barnard, R.O. Bangerter, E. Henestroza, I.D. Kaganovich, B.G. Logan, et al., A final focus model for heavy-ion fusion driver system codes, Nucl. Instr. Methods Phys. Res. A544 (2005) 243-254.

    [17] [17] A. Friedman, J.J. Barnard, R.H. Cohen, D.P. Groto, S.M. Lund, et al., Beam dynamics of the neutralized drift compression experiments ii: A novel pulse-compressing ion accelerator, Phys. Plasmas 17 (2010) 056704.

    [18] [18] D.H.H. Hoffmann, V.E. Fortov, H. Kuster, L.K. Weyrich, High energy density physics generated by intense heavy ion beams, Astrophys Space Sci. 322 (2009) 167-177.

    [19] [19] B.Yu. Sharkov, D.H.H. Hoffmann, A.A. Golubev, Y.T. Zhao, High energy density physics with intense ion beams, Matter Radiat. Extrem. 1 (2016) 28-47.

    [20] [20] M. Okamura, Y. Oguri, K. Sasa, T. Ito, M. Okada, et al., Design and construction of heavy ion RFQ linac with effective acceleration structure, Nucl. Instr. Methods B 89 (1994) 38-41.

    [21] [21] K. Horioka, T. Kawamura, M. Nakajima, T. Sasaki, K. Kondo, et al., High-energy-density physics researches based on heavy ion accelerator and pulse power devices, Nucl. Instr. Methods A 577 (2007) 298-302.

    [22] [22] S. Kawata, K. Horioka, M. Murakami, Y. Oguri, J. Hasegawa, et al., Studies on heavy ion fusion and high energy density physics in Japan, Nucl. Instr. Methods Phys. Res. A 557 (2007) 21-29.

    [23] [23] K. Horioka, T. Kawamura, M. Nakajima, K. Kondo, M. Ogawa, et al., Activities on heavy ion inertial fusion and beam-driven high energy density science in Japan, Nuc. Instr. Methods Phys. Res. A 606 (2009) 1-5.

    [24] [24] J.W. Kwan, High current ion sources and injectors for induction linacs in heavy ion fusion, IEEE Trans. Plasma Sci. 33 (2005) 1901-1910.

    [25] [25] J.J. Barnard, R.O. Bangerter, A. Faltens, T.J. Fessenden, A. Friedman, et al., Induction accelerator architectures for heavy ion fusion, Nucl. Instr. Methods A415 (1998) 218-228.

    [26] [26] M. Okamura, T. Katayama, R.A. Jameson, T. Takeuchi, H. Kashiwagi, Scheme for direct plasma injection into an RFQ linac, Laser Part. Beams 20 (2002) 455.

    [27] [27] J. Hasegawa, M. Yoshida, Y. Oguri, M. Ogawa, M. Nakajima, et al., High-current laser ion source for induction accelerators, Nucl. Instr. Methods B161e163 (2000) 1104-1107.

    [28] [28] B. Sharkov, R. Scrivens, Laser ion sources, IEEE Trans. Plasma Sci. 33 (2005) 1778-1785.

    [29] [29] M. Yoshida, J. Hasegawa, J.W. Kwan, Y. Oguri, M. Nakajima, et al., Grid-controlled extraction of low-charged ions from a laser ion source, Jap. J. Appl. Phys. 42 (2003) 5367-5371.

    [30] [30] Y. Oguri, K. Kashiwagi, J. Kaneko, J. Hasegawa, M. Yoshida, et al., Extraction of high-intensity ion beams from a laser plasma by a pulsed spherical diode, Phys. Rev. Special Top e Accel. Beams 8 (2005) 1-8, 060401.

    [31] [31] S. Ikeda, K. Horioka, M. Okamura, Measurement of magnetic field fluctuation and diamagnetic current within laser ablation plasma interacting with axial magnetic field, J. Appl. Phys. (2017) to be published.

    [32] [32] M. Okamura, A. Adeyemi, T. Kanesue, J. Tamura, K. Kondo, et al., Magnetic plasma confinement for laser ion source, Rev. Sci. Instr. 81 (2010) 02A510.

    [33] [33] S. Ikeda, M. Nakajima, K. Horioka, Control of laser ablation plasma with longitudinal magnetic field, J. Plasma Fusion Res. 7 (2012) 1201015.

    [34] [34] S. Ikeda, M. Nakajima, J. Hasegawa, K. Horioka, Magnetic control of laser ablation plasma for high-flux ion injectors, Nucl. Instr. Methods Phys. Res. A 733 (2014) 103.

    [35] [35] S. Ikeda, K. Horioka, M. Okamura, Investigation of the tail of a Fe plasma passing through solenoidal magnetic field for a laser ion source, IEEE Trans. Plasma Sci. 43 (2015) 3456.

    [36] [36] F. Isono, M. Nakajima, J. Hasegawa, T. Kawamura, K. Horioka, Control of laser plasma potential with external electrodes, Phys. Plasmas 22 (2015) 084501.

    [37] [37] F. Isono, M. Nakjima, J. Hasegawa, K. Horioka, Ion extraction from positively biased laser ablation plasma, Phys. Plasmas 23 (2016) 073102.

    [38] [38] Y. Sakai, T. Itagaki, K. Horioka, Comparative measurements of ion and electron beams from laser ablation plasma, J. Plasma Fusion Res. 11 (2016) 1206107.

    [39] [39] Y. Sakai, T. Itagaki, K. Horioka, Maximum available flux of charged particle from the laser ablation plasma, Phys. Plasmas 23 (2016) 123112.

    [40] [40] N. Hershkowitz, Sheath: more complicated than you think, Phys. Plasmas 12 (2005) 055502.

    [41] [41] T. Kikuchi, M. Nakajima, K. Horioka, Bunching dynamics and transport window of intense ion beams in final beam buncher, Laser Part. Beams 20 (2002) 589-593.

    [42] [42] T. Kikuchi, M. Nakajima, K. Horioka, Beam dynamics simulation in final beam bunching of heavy ion inertial fusion, J. Plasma Fusion Res. 79 (2003) 105.

    [43] [43] T. Kikuchi, M. Nakajima, K. Horioka, A quasi-equilibrium beam compression in a recirculator for heavy ion fusion, Phys. Plasmas 9 (2002) 3476.

    [44] [44] T. Kikuchi, M. Nakajima, K. Horioka, T. Katayama, Beam instability induced by space charge oscillation during final beam bunching for heavy ion fusion, Phys. Rev. Special Top e Accel. Beams 7 (2004) 034201.

    [45] [45] T. Kikuchi, K. Horioka, M. Nakajima, S. Kawata, Beam dynamics during longitudinal bunch compression of high-current heavy-ion beams, Nucl. Instrum. Methods A577 (2007) 103-109.

    [46] [46] T. Kikuchi, K. Horioka, Beam behavior under a non-stationary state in high-current heavy ion beams, Nucl. Instr. Methods A606 (2009) 31-36.

    [47] [47] T. Kikuchi, K. Horioka, Halo formation and emittance growth during bunch compression of high-current heavy ion beams, J. Plasma Fusion Res. 8 (2009) 1230-1233.

    [48] [48] T. Kikuchi, K. Horioka, K. Takahashi, T. Sasaki, T. Aso, et al., Numerical simulation for longitudinal and transverse coupling motion in compact electron beam simulator for heavy ion inertial fusion, Prog. Nucl. Energy 82 (2015) 126-129.

    [49] [49] T. Kikuchi, Y. Sakai, J. Hasegawa, K. Horioka, K. Takahashi, et al., Theoretical estimation and multi-particle simulation on evolution of longitudinal and transverse temperatures during pulse compression in compact simulator for heavy ion inertial fusion, IEEE Trans. Plasma Sci. 44 (2) (2016) 216-220.

    [50] [50] R.C. Davidson, H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators, Imperial College Press, 2001.

    [51] [51] M. Reiser, Theory and Design of Charged Particle Beams, Wiley, New York, 1994.

    [52] [52] S. Lund, T. Kikuchi, R. Davidson, Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity, Phys. Rev. Special Top e Accel. Beams 12 (2009) 114801.

    [53] [53] T. Kikuchi, K. Horioka, Static analysis of possible emittance growth of intense charged particle beams with thermal equilibrium distribution, Phys. Plasmas 16 (2009) 050703.

    [54] [54] T. Kikuchi, K. Horioka, Maximum possible growth in static analysis of intense charged particle beams with thermal equilibrium distribution, IEEJ Trans. FM 135 (2015) 161-162.

    [55] [55] T. Kikuchi, K. Horioka, Possible emittance growth induced by nonlinear space charge fields for arbitrary particle distributions, Phys. Rev. Accel. Beams 19 (2016) 064201.

    [56] [56] A. Nakayama, Y. Sakai, Y. Miyazaki, T. Kikuchi, M. Nakajima, et al., Longitudinal bunch compression study with induction voltage modulator, EPJ Web. Conf. 59 (2013) 09005.

    [57] [57] B. Beaudoin, I. Haber, R.A. Kishek, S. Bernal, T. Koeth, et al., Longitudinal confinement and matching of an intense electron beam, Phys. Plasmas 18 (2011) 013104.

    [58] [58] Y. Sakai, M. Nakajima, K. Horioka, Reproducible and controllable induction voltage adder for scaled beam experiments, Rev. Sci. Instr. 87 (2016) 083306.

    [59] [59] Y. Sakai, M. Nakajima, J. Hasegawa, T. Kikuchi, K. Horioka, A scaled experiment to study dynamics during longitudinal compression of intense charged particle beams, Nucl. Instr. Methods Phys. Res. A 733 (2014) 70-74.

    [60] [60] Y. Sakai, M. Nakajima, T. Kikuchi, J. Hasegawa, K. Horioka, A scaled experiment to study energy dissipation process during longitudinal compression of charged particle beams, J. Phys. Conf. Ser. 688 (2016) 012097.

    [61] [61] K. Horioka, J. Hasegawa, M. Nakajima, M. Ogawa, K. Takayama, et al., Long pulse ion induction linac, Nucl. Instr. Methods A415 (1998) 291-295.

    [62] [62] K. Takayama, J. Kishiro, Induction synchrotron, Nucl. Instr. Methods Phys. Res. A 451 (2000) 304-317.

    [63] [63] M. Watanabe, M. Nakajima, K. Horioka, Voltage modulation and repetitive operation of induction ion accelerator, Nucl. Instr. Methods A464 (2001) 440-444.

    [64] [64] K. Horioka, M. Nakajima, M. Watanabe, K. Takayama, E. Hotta, et al., Repetitive induction voltage modulator for heavy ion fusion, Laser Part. Beams 20 (2002) 609-612.

    [65] [65] M. Watanabe, M. Nakajima, M. Shiho, K. Horioka, K. Takayama, et al., Magnetic core characteristics for high rep-rate induction modulator, Rev. Sci. Instrum. 73 (2002) 1756-1760.

    [66] [66] M. Watanabe, M. Honda, M. Nakajima, K. Horioka, K. Takayama, et al., Induction Synchrotron (6): Beam Loading, Particle Accelerator Conference (PAC2001), Chicago, 2001.

    [67] [67] K. Takayama, K. Koseki, K. Torikai, A. Tokuchi, E. Nakamura, et al., Observation of the acceleration of a single bunch by using the induction device in the KEK proton synchrotron, Phys. Rev. Lett. 94 (2005) 144801.

    [68] [68] K. Takayama, Y. Arakida, T. Dixit, T. Iwashita, T. Kono, et al., Experimental demonstration of the induction synchrotron, Phys. Rev. Lett. 98 (2007) 054801.

    [69] [69] K. Takayama, Y. Arakida, T. Iwashita, Y. Shimosaki, T. Dixit, et al., Allion accelerators: an injection-free synchrotron, J. Appl. Phys. 101 (2007) 063304.

    [70] [70] J. Barnard, K. Horioka, Ion induction accelerators, in: K. Takayama, J. Briggs (Eds.), Induction Accelerators, Springer, 2010, p. 185.

    [71] [71] K. Takayama, K. Horioka, A quantum beam driver for the future inertial fusion, in: 21st International Symposium on Heavy Ion Fusion, Astana, Kazakhstan, 2016.

    [72] [72] K. Takayama, T. Adachi, M. Wake, K. Okamura, A racetrack shaped fixed field induction accelerator for giant cluster ions, Phys. Rev. Special Top e Accel. Beams 18 (2015) 050101.

    [73] [73] Y. Iwata, K. Tomita, T. Uchida, H. Matsuhata, Crystallographic coalescence of crystalline silicone clusters into superlattice structures, Crustal Growth Des. 15 (2015) 2119.

    [74] [74] C. Deutsch, G. Maynand, Ion stopping in dense plasmas: a basic physics approach, Matter Radiat. Extrem. 1 (2016) 277-307.

    [75] [75] U. Neuner, M. Ogawa, H. Kobayashi, M. Takizawa, K. Nishigori, et al., Interaction experiments of MeV heavy ions with a laser plasma and a Z-pinch helium plasma, Nucl. Instr. Methods A415 (1998) 586-590.

    [76] [76] J. Hasegawa, S. Hirai, K. Katagiri, M. Yonaha, H. Fukuda, et al., Interaction experiments using thin-foil-discharge warm-dense plasma, Nucl. Instr. Methods A577 (2007) 376-380.

    [77] [77] M. Ogawa, U. Neuner, A. Sakumi, J. Hasegawa, K. Sasa, et al., Heavy ion beam inertial confinement fusion studies in TIT, Fusion Eng. Des. 44 (1999) 279-283.

    [78] [78] Y. Oguri, T. Niinou, S. Nishinomiya, K. Katagiri, J. Kaneko, et al., Firsov approach to heavy-ion stopping in warm matter using a finitetemperature Thomas-Fermi model, Nucl. Instr. Methods A 577 (1e2) (2007) 381-385.

    [79] [79] K. Katagiri, J. Hasegawa, T. Niinou,Y. Oguri, Time-resolved measurement of a shock-driven plasma target for interaction experiments between heavy-ions and plasmas, J. Appl. Phys. 102 (11) (2007), 113304-1-8.

    [80] [80] S. Nishinomiya, K. Katagiri, T. Niinou, J. Kaneko, H. Fukuda, et al., Time-resolved measurement of energy loss of low-energy heavy ions in a plasma using a surface-barrier charged-particle detector, Prog. Nucl. Energy 50 (2008) 606-610.

    [81] [81] T. Sasaki, Y. Yano, M. Nakajima, T. Kawamura, K. Horioka, Warmdense- matter studies using pulse-power wire discharges in water, Laser Part. Beams 24 (2006) 371-380.

    [82] [82] T. Sasaki, M. Nakajima, T. Kawamura, K. Horioka, Electrical conductivities of aluminum, copper, and tungsten observed by an underwater explosion, Phys. Plasmas 17 (2010) 084501.

    [83] [83] T. Sasaki, T. Takahashi, Y. Amano, Y. Miki, T. Kiikuchi, et al., A semiempirical evaluation of the thermal conductivity in ablated dense tungsten plasma, IEEE Trans. Plasma Sci. 40 (2012) 3455-3457.

    [84] [84] T. Sasaki, T. Kikuchi, N. Harada, K. Horioka, Target design for high energy density physics experiment using intense ion beams, J. Phys. Conf. Ser. 244 (2010) 042019.

    [85] [85] Y. Oguri, K. Kondo, J. Hasegawa, K. Horioka, Numerical analysis of the hydrodynamic behavior of ion-beam-heated uranium target for equationof- state studies under extreme conditions, Energy Procedia 71 (2015) 244-251.

    [86] [86] T. Kawamura, K. Horioka, F. Koike, Potential of Ka radiation by energetic ionic particles for high energy density plasma diagnostics, Laser Part. Beams 24 (2006) 261-267.

    [87] [87] M. Murakami, J. Meyer-ter-Vehn, Radiation symmetrization in indirectly driven ICF targets, Nucl. Fusion 31 (1991) 1333-1342.

    [88] [88] S. Kawata, K. Miyazawa, T. Kikuchi, T. Someya, Robust heavy-ionbeam illumination in direct-driven heavy-ion inertial fusion, Nucl. Instr. Methods A577 (2007) 327.

    [89] [89] S. Kawata, T. Karino, Robust dynamic mitigation of instabilities, Phys. Plasmas 22 (2015) 042106.

    [90] [90] B.G. Logan, L.J. Perkins, J.J. Barnard, Direct drive heavy-ion-beam inertial fusion at high coupling efficiency, Phys. Plasmas 15 (2008) 072701.

    [91] [91] S. Kawata, T. Karino, A.I. Ogoyski, Review of heavy-ion inertial fusion physics, Matter Radiat. Extrem. 1 (2016) 89-113.

    [92] [92] M. Murakami, H. Nagatomo, H. Azechi, F. Ogando, S. Eliezer, Innovative ignition scheme for ICF-impact fast ignition, Nucl. Fusion 46 (2006) 99.

    [93] [93] M. Murakami, T. Sakaiya, J. Sanz, Self-similar ablative flow of nonstationary accelerating foil due to nonlinear heat conduction, Phys. Plasmas 14 (2007) 022707.

    [94] [94] K. Horioka, S. Kawata, K. Takayama, Y. Oguri, J. Hasegawa, et al., Progress of high-power-accelerator research for heavy ion fusion, J. Plasma Fusion Res. 89 (2013) 87-118.

    [95] [95] K. Takayama, K. Horioka, S. Kawata, J. Hasegawa, T. Kikuchi, et al., (in preparation).

    Tools

    Get Citation

    Copy Citation Text

    Kazuhiko Horioka. Progress in particle-beam-driven inertial fusion research: Activities in Japan[J]. Matter and Radiation at Extremes, 2018, 3(1): 12

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review article

    Received: Jun. 8, 2017

    Accepted: Aug. 11, 2017

    Published Online: May. 3, 2018

    The Author Email: Horioka Kazuhiko (khorioka@es.titech.ac.jp)

    DOI:doi.org/10.1016/j.mre.2017.08.002

    Topics