Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1257(2024)
Energy Storage Performance and Stability of Sodium Bismuth Titanate-Based Lead-Free Relaxor Ferroelectric Ceramics
[1] [1] LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Adv Mater, 2010, 22(8): E28-E62.
[2] [2] OMER A. Overview of renewable energy sources in the Republic of the Sudan[J]. Energy, 2002, 27(6): 523-547.
[3] [3] PAN H, LAN S, XU S Q, et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics[J]. Science, 2021, 374(6563): 100-104.
[4] [4] YANG B B, ZHANG Y, PAN H, et al. High-entropy enhanced capacitive energy storage[J]. Nat Mater, 2022, 21(9): 1074-1080.
[5] [5] SUN Z, ZHANG J, LUO H J, et al. Superior capacitive energy-storage performance in Pb-free relaxors with a simple chemical composition[J]. J Am Chem Soc, 2023, 145(11): 6194-6202.
[6] [6] WANG G, LU Z L, LI Y, et al. Electroceramics for high-energy density capacitors: Current status and future perspectives[J]. Chem Rev, 2021, 121(10): 6124-6172.
[7] [7] HAO X H. A review on the dielectric materials for high energy-storage application[J]. J Adv Dielect, 2013, 3(1): 1330001.
[8] [8] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.
[9] [9] JAYAKRISHNAN A R, SILVA J P B, KAMAKSHI K, et al. Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors[J]. Prog Mater Sci, 2023, 132: 101046.
[10] [10] WANG X W, YANG F, YU K X, et al. PbZrO3-based anti-ferroelectric thin films for high-performance energy storage: A review[J]. Adv Mater Technol, 2023, 8(10): 2202044.
[11] [11] GE P Z, TANG X G, MENG K, et al. Energy storage density and charge-discharge properties of PbHf1-xSnO3 antiferroelectric ceramics[J]. Chem Eng J, 2022, 429: 132540.
[12] [12] ZHU X P, GAO Y F, SHI P, et al. Ultrahigh energy storage density in (Bi0.5Na0.5)0.65Sr0.35TiO3-based lead-free relaxor ceramics with excellent temperature stability[J]. Nano Energy, 2022, 98: 107276.
[13] [13] WU L K, TANG L M, ZHAI Y Z, et al. Enhanced energy-storage performance in BNT-based lead-free dielectric ceramics via introducing SrTi0.875Nb0.1O3[J]. J Materiomics, 2022, 8(3): 537-544.
[14] [14] JOSEPH J, CHENG Z X, ZHANG S J. NaNbO3 modified BiScO3-BaTiO3 dielectrics for high-temperature energy storage applications[J]. J Materiomics, 2022, 8(4): 731-738.
[15] [15] DAI Z H, LI D Y, ZHOU Z J, et al. A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics[J]. Chem Eng J, 2022, 427: 131959.
[16] [16] LI W B, ZHOU D, XU R, et al. BaTiO3-Bi(Li0.5Ta0.5)O3, lead-free ceramics, and multilayers with high energy storage density and efficiency[J]. ACS Appl Energy Mater, 2018, 1(9): 5016-5023.
[17] [17] CHEN L, YU H F, WU J, et al. Large energy capacitive high-entropy lead-free ferroelectrics[J]. Nanomicro Lett, 2023, 15(1): 65.
[18] [18] YAN F, ZHOU X F, HE X, et al. Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy[J]. Nano Energy, 2020, 75: 105012.
[19] [19] LI D, ZHOU D, WANG D, et al. Lead-free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design[J]. Small, 2023, 19(8): 2206958.
[20] [20] QI H, ZUO R Z. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency[J]. J Mater Chem A, 2019, 7(8): 3971-3978.
[21] [21] WU J Y, MAHAJAN A, RIEKEHR L, et al. Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage[J]. Nano Energy, 2018, 50: 723-732.
[22] [22] MA W G, ZHU Y W, ALI MARWAT M, et al. Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics[J]. J Mater Chem C, 2019, 7(2): 281-288.
[23] [23] SHI X H, LI K, SHEN Z Y, et al. BS0.5BNT-based relaxor ferroelectric ceramic/glass-ceramic composites for energy storage[J]. J Adv Ceram, 2023, 12(4): 695-710.
[24] [24] LI Q N, ZHOU C R, XU J W, et al. Tailoring antiferroelectricity with high energy-storage properties in Bi0.5Na0.5TiO3-BaTiO3 ceramics by modulating Bi/Na ratio[J]. J Mater Sci Mater Electron, 2016, 27(10): 10810-10815.
[25] [25] QIAO X S, WU D, ZHANG F D, et al. Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics[J]. J Eur Ceram Soc, 2019, 39(15): 4778-4784.
[26] [26] LUO C Y, WEI Y Z, FENG Q, et al. Significantly enhanced energy-storage properties of Bi0.47Na0.47Ba0.06TiO3-CaHfO3 ceramics by introducing Sr0.7Bi0.2TiO3 for pulse capacitor application[J]. Chem Eng J, 2022, 429: 132165.
[27] [27] LIU G, TANG M Y, HOU X, et al. Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process[J]. Chem Eng J, 2021, 412: 127555.
[28] [28] SHI C, YAN F, GE G L, et al. Significantly enhanced energy storage performances and power density in (1-x)BCZT-xSBT lead-free ceramics via synergistic optimization strategy[J]. Chem Eng J, 2021, 426: 130800.
[29] [29] LIU G, DONG J, ZHANG L Y, et al. Phase evolution in (1-x)(Na0.5Bi0.5)TiO3-xSrTiO3 solid solutions: A study focusing on dielectric and ferroelectric characteristics[J]. J Materiomics, 2020, 6(4): 677-691.
[30] [30] LI X B, NIE S, WANG F F, et al. Local-structure evidence for a phase transition in a lead-free single crystal of (Na1/2Bi1/2)TiO3?0.06BaTiO3 by absorption fine-structure spectroscopy with synchrotron X-ray radiation[J]. Phys Rev B, 2020, 101: 104105.
[31] [31] ZUO C Y, YANG S L, CAO Z Q, et al. Excellent energy storage and hardness performance of Sr0.7Bi0.2TiO3 ceramics fabricated by solution combustion-synthesized nanopowders[J]. Chem Eng J, 2022, 442: 136330.
Get Citation
Copy Citation Text
GU Long, LI Zixin, ZHOU Wenjie, YAN Fei. Energy Storage Performance and Stability of Sodium Bismuth Titanate-Based Lead-Free Relaxor Ferroelectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1257
Category:
Received: Sep. 28, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: Fei YAN (yanfei@xidian.edu.cn)