Optics and Precision Engineering, Volume. 31, Issue 15, 2295(2023)

Review of deep learning-based algorithms for ship target detection from remote sensing images

Zexian HUANG1,2, Fanlu WU1, Yao FU1, Yu ZHANG1, and Xiaonan JIANG1、*
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun30033, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    References(113)

    [1] [1] 1徐芳, 刘晶红, 孙辉, 等. 光学遥感图像海面船舶目标检测技术进展[J]. 光学 精密工程, 2021, 29(4):916-931. doi: 10.37188/OPE.2020.0419XUF, LIUJ H, SUNH, et al. Research progress on vessel detection using optical remote sensing image[J]. Opt. Precision Eng., 2021, 29(4):916-931.(in Chinese). doi: 10.37188/OPE.2020.0419

    [2] [2] 2王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9): 1029-1039. doi: 10.3724/SP.J.1004.2011.01029WANGY Q, MAL, TIANY. Overview of ship target detection and recognition in optical remote sensing images[J]. Acta Automatica Sinica, 2011, 37(9): 1029-1039.(in Chinese). doi: 10.3724/SP.J.1004.2011.01029

    [3] D G LOWE. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91-110(2004).

    [4] N DALAL, B TRIGGS. Histograms of oriented gradients for human detection, 886-893(2005).

    [5] [5] 5范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学 精密工程, 2020, 28(5): 1152-1164.FANL L, ZHAOH W, ZHAOH Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Opt. Precision Eng., 2020, 28(5): 1152-1164.(in Chinese)

    [6] R GIRSHICK, J DONAHUE, T DARRELL et al. Rich feature hierarchies for accurate object detection and semantic segmentation, 580-587(2014).

    [7] M EVERINGHAM, S M ESLAMI, L GOOL et al. The pascal visual object classes challenge: a retrospective. International Journal of Computer Vision, 111, 98-136(2015).

    [8] K M HE, X Y ZHANG, S Q REN et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).

    [9] M EVERINGHAM, L GOOL, C K WILLIAMS et al. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88, 303-338(2010).

    [10] R GIRSHICK. Fast R-CNN, 1440-1448(2016).

    [12] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks, 91-99(2015).

    [13] J REDMON, S DIVVALA, R GIRSHICK et al. You only look once: unified, real-time object detection, 779-788(2016).

    [14] W LIU, D ANGUELOV, D ERHAN et al. SSD Single Shot MultiBox Detector. Computer Vision - ECCV 2016, 21-37(2016).

    [15] J REDMON, A FARHADI. YOLO9000: better, faster, stronger, 6517-6525(2017).

    [17] T Y LIN, M MAIRE, S BELONGIE et al. Microsoft COCO Common Objects in Context. Computer Vision-ECCV 2014, 740-755(2014).

    [20] H LAW, J DENG. CornerNet Detecting Objects as Paired Keypoints. Computer Vision - ECCV 2018, 765-781(2018).

    [22] C C ZHU, Y H HE, M SAVVIDES. Feature selective anchor-free module for single-shot object detection, 840-849(2020).

    [23] Z TIAN, C H SHEN, H CHEN et al. FCOS: fully convolutional one-stage object detection, 9626-9635.

    [24] [24] 24杨阳. 基于深度学习的遥感图像舰船目标检测与分类识别[D]. 武汉: 华中科技大学,2019.YANGY. Ship Target Detection and Classification in Remote Sensing Images Based on Deep Learning[D]. Wuhan: Huazhong University of Science and Technology,2019. (in Chinese)

    [25] W NINA, W CONDORI, V MACHACA et al. Small Ship Detection on Optical Satellite Imagery with YOLO and YOLT. Advances in Intelligent Systems and Computing, 664-677(2020).

    [26] [26] 26王楠. 基于深度学习的舰船检测识别[D]. 哈尔滨: 哈尔滨工业大学,2019.WANGN. Ship Detection and Recognition Based on Deep Learning[D]. Harbin: Harbin Institute of Technology,2019. (in Chinese)

    [27] M AL-SAAD, N ABURAED, A PANTHAKKAN et al. Airbus ship detection from satellite imagery using frequency domain learning, 11862, 279-285(2021).

    [28] Q P LI, L C MOU, Q J LIU et al. HSF-net: multiscale deep feature embedding for ship detection in optical remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 56, 7147-7161(2018).

    [29] S LIU, W KONG, X CHEN et al. Multi-scale ship detection algorithm based on a lightweight neural network for spaceborne SAR images. Remote Sensing, 14, 1149(2022).

    [30] G HUANG, Z LIU, L VAN DER MAATEN et al. Densely connected convolutional networks, 2261-2269(2017).

    [31] J JIAO, Y ZHANG, H SUN et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection. IEEE Access, 6, 20881-20892(2018).

    [32] L TIAN, Y CAO, B K HE et al. Image enhancement driven by object characteristics and dense feature reuse network for ship target detection in remote sensing imagery. Remote Sensing, 13, 1327(2021).

    [33] T Y LIN, P DOLLÁR, R GIRSHICK et al. Feature pyramid networks for object detection, 936-944(2017).

    [34] S LIU, L QI, H F QIN et al. Path aggregation network for instance segmentation, 8759-8768(2018).

    [36] L C CHEN, G PAPANDREOU, I KOKKINOS et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).

    [37] T W ZHANG, X L ZHANG, X KE. Quad-FPN: a novel quad feature pyramid network for SAR ship detection. Remote Sensing, 13, 2771(2021).

    [38] Y H QING, W Y LIU, L Y FENG et al. Improved YOLO network for free-angle remote sensing target detection. Remote Sensing, 13, 2171(2021).

    [39] C CHEN, C HE, C H HU et al. A deep neural network based on an attention mechanism for SAR ship detection in multiscale and complex scenarios. IEEE Access, 7, 104848-104863(2019).

    [40] X H ZHANG, H P WANG, C A XU et al. A lightweight feature optimizing network for ship detection in SAR image. IEEE Access, 7, 141662-141678(2019).

    [41] Z F QU, F Z ZHU, C X QI. Remote sensing image target detection: improvement of the YOLOv3 model with auxiliary networks. Remote Sensing, 13, 3908(2021).

    [42] G CHENG, C B LANG, M X WU et al. Feature enhancement network for object detection in optical remote sensing images. Journal of Remote Sensing, 2021, 9805389(2021).

    [43] G CHENG, P C ZHOU, J W HAN. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54, 7405-7415(2016).

    [44] K LI, G CHENG, S H BU et al. Rotation-insensitive and context-augmented object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 56, 2337-2348(2018).

    [45] Z H HONG, T YANG, X H TONG et al. Multi-scale ship detection from SAR and optical imagery via A more accurate YOLOv3. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6083-6101(2021).

    [46] N BODLA, B SINGH, R CHELLAPPA et al. Soft-NMS-improving object detection with one line of code, 5562-5570(2017).

    [47] X YANG, H SUN, K FU et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sensing, 10, 132(2018).

    [48] J SEO, S JEON et al. RBox-CNN: rotated bounding box based CNN for ship detection in remote sensing image, 420-423(2018).

    [49] [49] 49黎经元. 不同分辨率可见光遥感图像的舰船目标检测识别方法研究[D]. 杭州: 浙江大学,2021. doi: 10.1016/j.cja.2020.09.022LIJ Y. Research on Detection and Recognition of Ship Targets from Visible Remote Sensing Images with Different Resolutions[D]. Hangzhou: Zhejiang University,2021. (in Chinese). doi: 10.1016/j.cja.2020.09.022

    [50] [50] 50陈俊. 基于R-YOLO的多源遥感图像海面目标融合检测算法研究[D]. 武汉: 华中科技大学,2019.CHENJ. Research on Fusion Detection Algorithm of Sea Surface Target in Multi-Source Remote Sensing Images based on R-YOLO[D]. Wuhan: Huazhong University of Science and Technology,2019. (in Chinese)

    [51] X YANG, J C YAN. Arbitrary-Oriented Object Detection with Circular Smooth Label. Computer Vision-ECCV 2020, 677-694(2020).

    [52] N SU, Z B HUANG, Y M YAN et al. Detect larger at once: large-area remote-sensing image arbitrary-oriented ship detection. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).

    [53] Z Z SUN, M C DAI, X G LENG et al. An anchor-free detection method for ship targets in high-resolution SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7799-7816(2021).

    [54] X Y WANG, Z Y CUI, Z J CAO et al. Dense docked ship detection via spatial group-wise enhance attention in SAR images, 1244-1247(2021).

    [55] Z Y CUI, J X LENG, Y LIU et al. SKNet: detecting rotated ships as keypoints in optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 59, 8826-8840(2021).

    [56] J J CHEN, F Y XIE, Y Y LU et al. Finding arbitrary-oriented ships from remote sensing images using corner detection. IEEE Geoscience and Remote Sensing Letters, 17, 1712-1716(2020).

    [57] R WEN. An enhanced CNN-enabled learning method for promoting ship detection in maritime surveillance system. Ocean Engineering, 235, 109435(2021).

    [58] Z Q WANG, Y ZHOU, F T WANG et al. SDGH-net: ship detection in optical remote sensing images based on Gaussian heatmap regression. Remote Sensing, 13, 499(2021).

    [59] Y N YOU, Z Z LI, B H RAN et al. Broad area target search system for ship detection via deep convolutional neural network. Remote Sensing, 11, 1965(2019).

    [60] H C SHIN, K I LEE, C E LEE. Data augmentation method of object detection for deep learning in maritime image, 463-466(2020).

    [61] J Q HU, J Z HE, P JIANG et al. SOMC: a object-level data augmentation for sea surface object detection. Journal of Physics: Conference Series, 2171(2022).

    [62] ZHIJUN, CHEN, ZHIJUN, CHEN. Deep learning for autonomous ship-oriented small ship detection. Safety Science, 130, 104812(2020).

    [63] T KONG, A B YAO, Y R CHEN et al. HyperNet: towards accurate region proposal generation and joint object detection, 845-853(2016).

    [64] S H WEI, H M CHEN, X J ZHU et al. Ship detection in remote sensing image based on faster R-CNN with dilated convolution, 7148-7153(2020).

    [65] S M ZHANG, R Z WU, K Y XU et al. R-CNN-based ship detection from high resolution remote sensing imagery. Remote Sensing, 11, 631(2019).

    [66] W C LIU, L MA, H CHEN. Arbitrary-oriented ship detection framework in optical remote-sensing images. IEEE Geoscience and Remote Sensing Letters, 15, 937-941(2018).

    [67] C Q CAO, J WU, X D ZENG et al. Research on airplane and ship detection of aerial remote sensing images based on convolutional neural network. Sensors, 20, 4696(2020).

    [68] [68] 68王浩君. 基于深度学习的光学遥感影像海上舰船目标检测研究[D]. 杭州: 杭州师范大学,2019. doi: 10.1109/igarss.2019.8898759WANGH J. Research on Ship Target Detection in Optical Remote Sensing Images Based on Deep Learning[D]. Hangzhou: Hangzhou Normal University,2019. (in Chinese). doi: 10.1109/igarss.2019.8898759

    [69] [69] 69韩子硕, 王春平, 付强. 基于深层次特征增强网络的SAR图像舰船检测[J]. 北京理工大学学报, 2021, 41(9): 1006-1014.HANZ SH, WANGCH P, FUQ. Ship detection in SAR images based on deep feature enhancement network[J]. Transactions of Beijing Institute of Technology, 2021, 41(9): 1006-1014.(in Chinese)

    [70] L CHEN, W SHI, D DENG. Improved YOLOv3 based on attention mechanism for fast and accurate ship detection in optical remote sensing images. Remote Sensing, 13, 660(2021).

    [71] X NIE, M Y DUAN, H X DING et al. Attention mask R-CNN for ship detection and segmentation from remote sensing images. IEEE Access, 8, 9325-9334(2020).

    [72] J M HU, X Y ZHI, T J SHI et al. PAG-YOLO: a portable attention-guided YOLO network for small ship detection. Remote Sensing, 13, 3059(2021).

    [73] L DENG, G Q LI, S HAN et al. Model compression and hardware acceleration for neural networks: a comprehensive survey. Proceedings of the IEEE, 108, 485-532(2020).

    [74] Z LIU, J G LI, Z Q SHEN et al. Learning efficient convolutional networks through network slimming, 2755-2763(2017).

    [75] J Y GUO, W C ZHANG, W L OUYANG et al. Model compression using progressive channel pruning. IEEE Transactions on Circuits and Systems for Video Technology, 31, 1114-1124(2021).

    [78] J X WU, C LENG, Y H WANG et al. Quantized convolutional neural networks for mobile devices, 4820-4828(2016).

    [79] Y H XU, W R DAI, Y Y QI et al. Iterative deep neural network quantization with lipschitz constraint. IEEE Transactions on Multimedia, 22, 1874-1888(2020).

    [80] F ZHANG, Y B LIU, Y S ZHOU et al. A lossless lightweight CNN design for SAR target recognition. Remote Sensing Letters, 11, 485-494(2020).

    [81] H Y CHEN, F ZHANG, B TANG et al. Slim and efficient neural network design for resource-constrained SAR target recognition. Remote Sensing, 10, 1618(2018).

    [82] X J MA, K F JI, B L XIONG et al. Light-YOLOv4: an edge-device oriented target detection method for remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10808-10820(2021).

    [83] [83] 83陈科峻, 张叶. 基于YOLO-v3模型压缩的卫星图像船只实时检测[J]. 液晶与显示, 2020, 35(11): 1168-1176. doi: 10.37188/yjyxs20203511.1168CHENK J, ZHANGY. Real-time ship detection in satellite images based on YOLO-v3 model compression[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(11): 1168-1176. (in Chinese). doi: 10.37188/yjyxs20203511.1168

    [84] Y D LI, S S ZHANG, W Q WANG. A lightweight faster R-CNN for ship detection in SAR images. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).

    [85] H HUANG, D C SUN, R F WANG et al. Ship target detection based on improved YOLO network. Mathematical Problems in Engineering, 2020, 1-10(2020).

    [86] P DING, Y ZHANG, W J DENG et al. A light and faster regional convolutional neural network for object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 208-218(2018).

    [87] L ZHOU, S Y WEI, Z M CUI et al. Lira-YOLO: a lightweight model for ship detection in radar images. Journal of Systems Engineering and Electronics, 31, 950-956(2020).

    [88] Y ZHAO, Y YIN, G GUI. Lightweight deep learning based intelligent edge surveillance techniques. IEEE Transactions on Cognitive Communications and Networking, 6, 1146-1154(2020).

    [89] S VOINOV, F HEYMANN, R BILL et al. Multiclass vessel detection from high resolution optical satellite images based on deep neural networks, 166-169(2019).

    [90] [90] 90聂婷. 大幅宽光学遥感图像目标检测技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所,2019.NIET. Research on Target Detection Technology of Large-Width Optical Remote Sensing Image[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese)

    [92] G S XIA, X BAI, J DING et al. DOTA: a large-scale dataset for object detection in aerial images, 3974-3983(2018).

    [93] Z K LIU, L YUAN, L B WENG et al. A high resolution optical satellite image dataset for ship recognition and some new baselines, 2, 324-331(2017).

    [94] G CHENG, J HAN, P ZHOU et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 119-132(2014).

    [96] A J GALLEGO, A PERTUSA, P GIL. Automatic ship classification from optical aerial images with convolutional neural networks. Remote Sensing, 10, 511(2018).

    [98] KE, LI, KE, LI. Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).

    [99] [99] 99姚力波, 张筱晗, 吕亚飞, 等. FGSC-23: 面向深度学习精细识别的高分辨率光学遥感图像舰船目标数据集[J]. 中国图象图形学报, 2021, 26(10): 2337-2345.YAOL B, ZHANGX H, LÜY F, et al. FGSC-23: a large-scale dataset of high-resolution optical remote sensing image for deep learning-based fine-grained ship recognition[J]. Journal of Image and Graphics, 2021, 26(10): 2337-2345.(in Chinese)

    [100] J W LI, C W QU, J Q SHAO. Ship detection in SAR images based on an improved faster R-CNN, 1-6(2017).

    [101] Y Y WANG, C WANG, H ZHANG et al. A SAR dataset of ship detection for deep learning under complex backgrounds. Remote Sensing, 11, 765(2019).

    [102] [102] 102孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852-862.SUNX, WANGZH R, SUNY R, et al. AIR-SARShip-1.0: high-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852-862. (in Chinese)

    [103] S J WEI, X F ZENG, Q Z QU et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access, 8, 120234-120254(2020).

    [104] K A PARK, J J PARK, J C JANG et al. Multi-spectral ship detection using optical, hyperspectral, and microwave SAR remote sensing data in coastal regions. Sustainability, 10, 4064(2018).

    [105] [105] 105李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1): 148-166. doi: 10.11834/jrs.20210259LISH T, LIC Y, KANGX D. Development status and future prospects of multi-source remote sensing image fusion[J]. Journal of Remote Sensing, 2021, 25(1): 148-166. (in Chinese). doi: 10.11834/jrs.20210259

    [106] A SHRIVASTAVA, A GUPTA, R GIRSHICK. Training region-based object detectors with online hard example mining, 761-769(2016).

    [107] Z H ZHOU. A brief introduction to weakly supervised learning. National Science Review, 5, 44-53(2018).

    [108] Y YANG, Z X PAN, Y X HU et al. PistonNet: object separating from background by attention for weakly supervised ship detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5190-5202(2022).

    [109] T ELSKEN, J H METZEN, F HUTTER. Neural Architecture Search. Automated Machine Learning, 63-77(2019).

    [111] N CARION, F MASSA, G SYNNAEVE et al. End-to-end object detection with transformers. Computer Vision-ECCV 2020, 213-229(2020).

    [112] Y N ZHANG, M J ER, W X GAO et al. High performance ship detection via transformer and feature distillation, 31-36(2022).

    [113] Y Y CHEN, Z H XIA, J LIU et al. TSDet: end-to-end method with transformer for SAR ship detection, 1-8(2022).

    CLP Journals

    [1] Shanling LIN, Xue ZHANG, Yan CHEN, Jianpu LIN, Shanhong LÜ, Zhixian LIN, Tailiang GUO. Integrating global information and dual-domain attention mechanism for optical remote sensing aircraft target detection[J]. Optics and Precision Engineering, 2024, 32(20): 3085

    [2] Hua WEI, Xiongxin TANG, Haitao NIE, Jing WANG, Hanxiang YANG, Yuanyuan XIA, Fanjiang XU. Degradation remote sensing image quality enhancement based on frequency-domain-spatial-domain hybrid attention[J]. Optics and Precision Engineering, 2024, 32(19): 2971

    [3] Hua WEI, Xiongxin TANG, Haitao NIE, Jing WANG, Hanxiang YANG, Yuanyuan XIA, Fanjiang XU. Degradation remote sensing image quality enhancement based on frequency-domain-spatial-domain hybrid attention[J]. Optics and Precision Engineering, 2024, 32(19): 2971

    [4] Shanling LIN, Xue ZHANG, Yan CHEN, Jianpu LIN, Shanhong LÜ, Zhixian LIN, Tailiang GUO. Integrating global information and dual-domain attention mechanism for optical remote sensing aircraft target detection[J]. Optics and Precision Engineering, 2024, 32(20): 3085

    [5] Wenjun ZHOU, Shuo HUANG, Ning ZHANG, Chuanlong SONG, Yuxuan ZHAO, Yifan DUAN, Guoqing XU. Aircraft target detection in SAR images based on MA-DETR[J]. Optics and Precision Engineering, 2024, 32(18): 2814

    [6] Wenjun ZHOU, Shuo HUANG, Ning ZHANG, Chuanlong SONG, Yuxuan ZHAO, Yifan DUAN, Guoqing XU. Aircraft target detection in SAR images based on MA-DETR[J]. Optics and Precision Engineering, 2024, 32(18): 2814

    Tools

    Get Citation

    Copy Citation Text

    Zexian HUANG, Fanlu WU, Yao FU, Yu ZHANG, Xiaonan JIANG. Review of deep learning-based algorithms for ship target detection from remote sensing images[J]. Optics and Precision Engineering, 2023, 31(15): 2295

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Sep. 16, 2022

    Accepted: --

    Published Online: Sep. 5, 2023

    The Author Email: JIANG Xiaonan (jxn_ciomp@qq.com)

    DOI:10.37188/OPE.20233115.2295

    Topics