Journal of Atmospheric and Environmental Optics, Volume. 11, Issue 6, 402(2016)

Research Progress on Estimating Emissions from Biomass Burning Based on Satellite Observations

Huiqin MAO, Yuhuan ZHANG*, Qing LI, and Lijuan ZHANG
Author Affiliations
  • [in Chinese]
  • show less
    References(66)

    [1] [1] Olivier J G J, van Aardenne J A, Dentener F J,et al. Recent trends in globalgreenhouse gas emissions: regional trends 1970-2000 and spatialdistribution of key sources in 2000[J]. Environ. Sci., 2005, 2(2/3): 81-99.

    [2] [2] Bond T C, Streets D G, Yarber K F,et al. A technology-based global inventory of black and organic carbon emissions from combustion[J]. J. Geophys. Res., 2004, 109(D14): D14203.

    [3] [3] Andreae M O, Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols[J].Earth Sci. Rev., 2008, 89(1): 13-41.

    [4] [4] Pfister G G, Wiedinmyer C, Emmons L K. Impacts of thefall 2007 California wildfires on surface ozone: Integrating localobservations with global model simulations[J].Geophys. Res. Lett., 2008, 35(19): L19814.

    [5] [5] Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC[M]. ed. by Prrry M L. Cambridge: Cambridge University Press, 2007.

    [6] [6] van Leeuwen T T, van der Werf G R. Spatial and temporal variability in the ratio of trace gases emitted from biomass burning[J].Atmos. Chem. Phys., 2011, 11(8): 3611-3629.

    [7] [7] Andreae M O, Merlet P. Emission of trace gases and aerosols from biomassburning[J].Glob. Biogeochem. Cy., 2001, 15(4): 955-966.

    [8] [8] Akagi S K, Yokelson R J, Wiedinmyer C,et al. Emissionfactors for open and domestic biomass burning for use inatmospheric models[J]. Atmos. Chem. Phys. Discuss., 2010, 10(11): 27523-27602.

    [9] [9] Giglio L, Randerson J T, van der Werf G R,et al. Assessing variability and long-term trends in burned area by mergingmultiple satellite fire products[J]. Biogeosciences, 2010, 7(3): 1171-1186.

    [10] [10] Stroppiana D, Pinnock S, Pereira J M C,et al. Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia[J]. Remote Sens. Environ., 2002, 82(1): 21-37.

    [11] [11] Giglio L, Descloitres J, Justice C O, Kaufman Y J. An enhanced contextualfire detection algorithm for MODIS[J].Remote Sens. Environ., 2003, 87(2): 273-282.

    [12] [12] Roberts G, Wooster M J, Perry G L W,et al. Retrieval of biomass combustion rates and totals from fire radiative powerobservations: Application to southern Africa using geostationary SEVIRI imagery[J]. J. Geophys. Res.: Atmos., 2005, 110(D21): D21111.

    [13] [13] Wooster M J, Zhukov B, Oertel D. Fire radiative energy for quantitativestudy of biomass burning: Derivation from the BIRD experimental satellite andcomparison to MODIS fire products[J].Remote Sens. Environ., 2003, 8(1): 83-107.

    [14] [14] Seiler W, Crutzen P J. Estimates of gross and net fluxes of carbon betweenthe biosphere and the atmosphere from biomass burning[J].Clim. Change, 1980, 2(3): 207-247.

    [15] [15] Kaufman Y J, Remer L A, Ottmar R D,et al. Relationship between remotely sensed fire intensity and rate of emission of smoke: SCAR-C experiment[A]. In Global Biomass Burning[M]. ed. by Levin J S. Cambridge: The MIT Press, 1991: 685-696.

    [16] [16] Wooster M J, Roberts G, Perry G L W,et al. Combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release[J]. J. Geophys. Res., 2005, 110(D24): D24311.

    [17] [17] Freeborn P H, Wooster M J, Hao W M,et al. Relationships between energy release, fuel mass loss, and tracegas and aerosol emissions during laboratory biomass fires[J]. J. Geophys. Res. 2008, 113(D1): D01301.

    [18] [18] Matson M, Holben B. Satellite detection of tropical burning in Brazil[J].Int. J. Remote Sens., 1987, 8(3): 509-516.

    [19] [19] Giglio L, Kendall J D, Justice C O. Evaluation of global fire detection algorithms using simulated AVHRR infrared data[J].Int. J. Remote Sens., 1999, 20(10): 1947-1985.

    [20] [20] Li Z, Nadon S, Cihlar J. Satellite-based detection of Canadian boreal forest fire: Development and application of the algorithm[J].Int. J. Remote Sens., 2000, 21(16): 3057-3069.

    [21] [21] Lasaponara R, Cuomo V, Machiatto M F,et al. A self-adaptive algorithm based on AVHRR multitemporal data analysisfor small active fire detection[J]. Int. J. Remote Sens., 2003, 24(8): 1723-1749.

    [22] [22] Csiszar I, Schroeder W, Giglio L,et al. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results[J]. J. Geophys. Res. Atmos., 2014, 119(2): 803-816.

    [23] [23] Schroeder W, Oliva P, Giglio L.1995 The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment[J].Remote Sens. Environ., 2014, 143: 85-96.

    [24] [24] Li Qing, Zhang Lijuan, Wu Chuanqing,et al. Satellite-remote-sensing-based monitoring of straw burning and analysis of its impact on air quality[J]. Journal of Ecology and Rural Enviroment, 2009, 25(1): 32-37(in Chinese).

    [25] [25] Key C H. Ecological and sampling constraints on defining land scape fire severity[J].Fire Ecol., 2006, 2(2): 34-59.

    [26] [26] Roy D P, Jin Y, Lewis P E,et al. Prototyping a global algorithm for systematic fire affected area mapping using MODIS time series data[J]. Remote Sens. Environ., 2005, 97(2): 137-162.

    [27] [27] Pu R, Li Z, Gong P,et al. Development and analysis of a 12-year daily 1-km forest firedataset across North America from NOAA/AVHRR data[J]. Remote Sens. Environ., 2007, 108(2): 198-208.

    [28] [28] Tansey K, Grégoire J M. Defourny P,et al. A new, global, multi-annual (2000-2007)burnt area product at 1 km resolution[J]. Geophys. Res. Lett., 2008, 35(1): L01401

    [29] [29] Roy D P, Lewis P E, Justice C O. Burned area mapping using multi-temporal moderate spatial resolution data-A bi-directional reflectance model-based expectation approach[J].Remote Sens. Environ., 2002, 83(1/2): 263-286.

    [30] [30] Epting J, Verbyla D, Sorbel B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+[J].Remote Sens. Environ., 2005, 9(3): 328-339.

    [31] [31] Giglio L, van der Werf G R, Randerson J T,et al. Global estimation of burned area using MODIS activefire observations[J]. Atmos. Chem. Phys., 2006, (4): 957-974.

    [32] [32] Zhang X, Kondragunta, S. Temporal and spatial variability in biomass burned across the USA derived from the GOES fire product[J].Remote Sens. Environ., 2008, 112(6): 2886-2897.

    [33] [33] Schroeder W, Prins E, Giglio L,et al. Validation of GOES and MODIS activefire detection products using ASTER and ETM+ data[J]. Remote Sens. Environ., 2008, 112(6): 2711-2726.

    [34] [34] Morisette J, Giglio L, Csiszar I,et al. Validation of the MODIS active fire product over Southern Africa with ASTER data[J]. Int. J. Remote Sens., 2005, 2(19): 4239-4264.

    [35] [35] Morisette J T, Giglio L, Csiszar I,et al. Validation of MODIS active fire detection products derived from two algorithms[J]. Earth Interactions, 2005, 9: 141-161.

    [36] [36] Csiszar I, Morisette J T, Giglio L. Validation of active fire detectionfrom moderate-resolution satellite sensors: The MODIS examplein Northern Eurasia[J].IEEE Trans. Geosci. Remote Sens., 2006, 44(7): 1757-1764.

    [37] [37] Zhang X Y, Kondragunta S, Quayle B. Estimation of biomass burned areas using multiple-satellite-observed active fires[J].IEEE Trans. Geosci. Remote Sens., 2011, 49(11): 4469-4482.

    [38] [38] Chuvieco E, Yue C, Heil A,et al. A new global burned area product for climate assessment of fire impacts[J]. Global Ecol. Biogeogr., 2016, 25(5): 619-629.

    [39] [39] Mouillot F, Schultz M G, Yue C,et al. Ten years of global burned area products from spaceborne remote sensing-a review: Analysis of user needs and recommendations for future developments[J]. Int. J. App. Earth Obs., 2014, 26: 64-79.

    [40] [40] Kaufman Y J, Kleidman R G, King M D. SCAR-B fires inthe tropics: properties and remote sensing from EOS-MODIS[J].J. Geophys. Res., 1998, 103(D24): 31955-31968.

    [41] [41] Ichoku C, Giglio L, Wooster M J,et al. Global characterizationof biomass-burning patterns using satellite measurements of fire radiative energy[J]. Remote. Sens. Environ., 2008, 112(6): 2950-2962.

    [42] [42] Dozier J. A method for satellite identification of surface temperature fields of subpixel resolution[J].Remote Sens. Environ., 1981, 11: 221-229.

    [43] [43] Wooster M J, Zhukov B, Oertel D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products[J].Remote Sens. Environ., 2003, 8(1): 83-107.

    [44] [44] Zhukov B, Lorenz E, Oertel D,et al. Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission 2001-2004[J]. Remote Sens. Environ., 2006, 100(1): 29-51.

    [45] [45] Justice C O, Giglio L, Korontzi S,et al. The MODIS fire products[J]. Remote Sens. Environ., 2002, 83(1): 244-262.

    [46] [46] Roberts G J, Wooster M J. Fire detection and fire characterization over Africa using Meteosat SEVIRI[J].IEEE Trans. Geosci. Remote Sens., 2008, 4(4): 1200-1218.

    [47] [47] Andela N, Kaiser J, van der Werf G,et al. New fire diurnal cycle characterizations to improve fire radiativeenergy assessments made from MODIS observations[J]. Atmos. Chem. Phys., 2015, 15(15): 8831-8846.

    [48] [48] Kaiser J W, Heil A, Andreae M O,et al. Biomass burning emissionsestimated with a global fire assimilation system basedon observed fire radiative power[J]. Biogeosciences, 2012, 9(1): 527-554.

    [49] [49] Freeborn P H, Wooster M J, Roberts G,et al. Development of a virtual active fire product for Africa through a synthesis of geostationary and polar orbiting satellite data[J]. Remote Sens. Environ., 2009, 113(8): 1700-1711.

    [50] [50] Giglio L, Randerson J T, van der Werf G R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4)[J].J. Geophys. Res. Biogeosci., 2013, 118(1): 317-328.

    [51] [51] Wiedinmyer C, Akagi S K, Yokelson R J,et al. The Fire Inventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning[J]. Geosci. Model Dev., 2011, 4: 625-641.

    [52] [52] Hoelzemann J J, Schultz M G, Brasseur G P,et al. Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data[J]. J. Geophys. Res., 2014, 109(D14): D14S04.

    [53] [53] Jain A K, Tao Z, Yang X,et al. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2[J]. J. Geophys. Res., 2006, 111(D6): D06304.

    [54] [54] Zhang X, Kondragunta S, Ram J,et al. Near-real-time global biomass burning emissions product from geostationary satellite constellation[J]. J. Geophys. Res., 2012, 117(D14): D14201.

    [55] [55] Yokelson R J, Burling I R, Urbanski S P,et al. Trace gas and particle emissions from openbiomass burning in Mexico[J]. Atmos. Chem. Phys., 2011, 11(14): 6787-6808.

    [56] [56] Ichoku C, Ellison L. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements[J].Atmos. Chem. Phys., 2014, 14(13): 6643-6667.

    [57] [57] Reid J S, Hyer E J, Prins E M,et al. Global monitoring and forecastingof biomass-burning smoke: description and lessons from the Fire Locatingand Modeling of Burning Emissions (FLAMBE) program[J]. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2009, 2(3): 144-162.

    [58] [58] Freeborn P H, Wooster M J, Roy D P,et al. Quantification of MODIS fire radiativepower (FRP) measurement uncertaintyfor use in satellite-based active firecharacterization and biomass burning estimation[J]. Geophys. Res. Lett., 2014, 41(6): 1988-1994.

    [59] [59] Cao Guoliang, Zhang Xiaoye, Wang Dan,et al. Inventory of atmospheric pollutants discharged from biomass burning in China continent[J]. China Environmental Science, 2005, 25(4): 389-393(in Chinese).

    [60] [60] Cao Guoliang, Zhang Xiaoye, Wang Dan,et al. Inventory of emissions of pollutants from open burning crop residue[J]. Journal of Agro-Environment Science, 2005, 24(4): 800-804(in Chinese).

    [61] [61] Lu Bing, Kong Shaofei, Han Bin,et al. Inventory of atmospheric pollutants discharged from biomass burning in China continent in 2007[J]. China Environmental Science, 2011, 31(2): 186-194(in Chinese).

    [62] [62] Wang Shuxiao, Zhang Chuying. Spatial and temporal distribution of air pollutant emissions from open burning of crop residues in China[J].Science Paper Online, 2008, 5: 329-333(in Chinese).

    [63] [63] Zhao Jianning, Zhang Guilong, Yang Dianlin. Estimation of carbon emission from burning of grain crop residues in China[J].Journal of Agro-Environment Science, 2011, 30(4): 812-81(in Chinese).

    [64] [64] Li Feiyue, Wang Jianfei. Estimation of carbon emission from burning and carbon sequestration from biochar producing using crop straw in China[J].Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 1-7(in Chinese).

    [65] [65] Liu M, Song Y, Yao H,et al. Estimating emissions from agricultural fires in the North China Plain based on MODIS fire radiative power[J]. Atmos. Environ., 2015, 112: 326-334.

    [66] [66] Li J, Li Y, Bo Y,et al. High-resolution historical emission inventories of crop residue burning in fields in China for the period 1990-2013[J]. Atmos. Environ., 2016, 138: 152-161.

    Tools

    Get Citation

    Copy Citation Text

    MAO Huiqin, ZHANG Yuhuan, LI Qing, ZHANG Lijuan. Research Progress on Estimating Emissions from Biomass Burning Based on Satellite Observations[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(6): 402

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 4, 2016

    Accepted: --

    Published Online: Jan. 3, 2017

    The Author Email: Yuhuan ZHANG (yuhuan-rs@163.com)

    DOI:10.3969/j.issn.1673-6141.2016.06.001

    Topics