Optics and Precision Engineering, Volume. 31, Issue 14, 2123(2023)

Weather recognition combining improved ConvNeXt models with knowledge distillation

Libo LIU... Siyu XI* and Zhen DENG* |Show fewer author(s)
Author Affiliations
  • School of Information Engineering, Ningxia University, Yinchuan750021, China
  • show less
    Figures & Tables(13)
    Block comparison between ResNet and ConvNeXt
    ConvNeXt_F network structure diagram with SimAM attention mechanism
    Overall flow chart of knowledge distillation
    Example pictures of four types of weather
    Comparison of heat maps of different attention mechanisms
    • Table 1. Datasets content description

      View table
      View in Article

      Table 1. Datasets content description

      种类描述数量
      Sunny晴天3 180
      Snow雪天1 540
      Rainy雨天1 580
      Haze雾天1 700
    • Table 2. Confusion matrix table

      View table
      View in Article

      Table 2. Confusion matrix table

      真是情况预测结果(正类)预测结果(负类)
      正类TP(真正例)FN(假反例)
      负类FP(假正例)TN(真反例)
    • Table 3. Weather classification results of different algorithms for weather-traffic dataset

      View table
      View in Article

      Table 3. Weather classification results of different algorithms for weather-traffic dataset

      ModelAccuracy/%FPS/Hz

      FLOPs

      /G

      Params

      /M

      DenseNet993.4433.52.887.9
      ResNet501093.595.64.1125.56
      AlexNet1193.595.60.7261.1
      VGG16-TL1292.8133.615.65138.36
      JVNet1394.8111.910.1175.92
      Swin transformer2296.5645.115.1487.77
      ConvNeXt1596.83108.94.4628.57
      ConvNeXt_F98.79111.84.4628.39
      MobileNetV32383.58132.70.062.54
      MobileNetV3_Z(ours)96.22157.60.062.54
    • Table 4. Weather classification results of different algorithms for RSCM2017 dataset

      View table
      View in Article

      Table 4. Weather classification results of different algorithms for RSCM2017 dataset

      ModelAccuracy/%FPS/Hz
      DenseNet976.8733.3
      ResNet501082.6386.5
      AlexNet1180.8244.8
      VGG16-TL1280.331.6
      JVNet1385.1581.6
      Swin transformer2287.3125.6
      ConvNeXt1588.4999.1
      ConvNeXt_F90.4796.5
      MobileNetV32373.27115.4
      MobileNetV3_Z(ours)84.80137.6
    • Table 5. Comparison experiment results of different attention modules

      View table
      View in Article

      Table 5. Comparison experiment results of different attention modules

      ModelAccuracy(%)
      weather-trafficRSCM2017
      +SENet97.1489.18
      +CBMA97.3688.28
      +SimAm98.2990.29
    • Table 6. Results of teacher model ablation experiment

      View table
      View in Article

      Table 6. Results of teacher model ablation experiment

      ModelAccuracy/%
      weather-trafficRSCM2017
      ConvNeXt96.9488.49
      Lf98.0689.29
      SimAm98.2990.29
      Lf+SimAm98.7990.47
    • Table 7. Table of results of experiments at different distillation temperatures

      View table
      View in Article

      Table 7. Table of results of experiments at different distillation temperatures

      蒸馏温度TAccuracy(%)
      weather-trafficRSCM2017
      395.1983.47
      596.1484.29
      796.2284.80
      996.2284.38
      1196.0384.33
      1596.0083.80
    • Table 8. Experimental results of different mixed loss weight parameters

      View table
      View in Article

      Table 8. Experimental results of different mixed loss weight parameters

      权重参数αAccuracy(%)
      weather-trafficRSCM2017
      0.295.8384.07
      0.396.2284.80
      0.495.6884.31
    Tools

    Get Citation

    Copy Citation Text

    Libo LIU, Siyu XI, Zhen DENG. Weather recognition combining improved ConvNeXt models with knowledge distillation[J]. Optics and Precision Engineering, 2023, 31(14): 2123

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Nov. 11, 2022

    Accepted: --

    Published Online: Aug. 2, 2023

    The Author Email: XI Siyu (xisiyu852@qq.com), DENG Zhen (dengzhen1025@163.com)

    DOI:10.37188/OPE.20233114.2123

    Topics