Journal of Synthetic Crystals, Volume. 52, Issue 10, 1887(2023)
Microreactor Strategy for Morphology Modulation of γ-CuI
[1] [1] BHRER W, HLG W. Crystal structure of high-temperature cuprous iodide and cuprous bromide[J]. Electrochimica Acta, 1977, 22(7): 701-704.
[2] [2] SIRIMANNE P M, SOGA T, KUNST M. Observation of microwave conductivity in copper iodide films and relay effect in the dye molecules attached to CuI photocathode[J]. Journal of Solid State Chemistry, 2005, 178(10): 3010-3013.
[3] [3] MA Y S, GU M, HUANG S M, et al. Colloidal synthesis of uniform CuI nanoparticles and their size dependent optical properties[J]. Materials Letters, 2013, 100: 166-169.
[4] [4] PISHTSHEV A, KARAZHANOV S Z. Structure-property relationships in cubic cuprous iodide: a novel view on stability, chemical bonding, and electronic properties[J]. The Journal of Chemical Physics, 2017, 146(6): 064706.
[5] [5] LIU A, ZHU H H, PARK W T, et al. High-performance p-channel transistors with transparent Zn doped-CuI[J]. Nature Communications, 2020, 11: 4309.
[6] [6] GENG J F, LI M, WANG H Y, et al. Crystal growth and optical properties of γ-CuI by vertical Bridgman method[J]. Journal of Crystal Growth, 2021, 568/569: 126165.
[7] [7] XIA C C, XIONG G, YOU L X, et al. Synthesis, crystal structure, and photoluminescent properties of a series of LnⅢ-CuⅠ heterometallic coordination polymers based on Cu4I3 clusters and ln-ina rod units[J]. Australian Journal of Chemistry, 2017, 70(8): 943.
[8] [8] NIU S R, ZHAO F Z, HANG Y, et al. Enhanced p-CuI/n-ZnO photodetector based on thermal evaporated CuI and pulsed laser deposited ZnO nanowires[J]. Optics Letters, 2020, 45(2): 559-562.
[9] [9] SUN C, LLANOS L, ARCE P, et al. Nuclearity control for efficient thermally activated delayed fluorescence in a CuI complex and its halogen-bridged dimer[J]. Chemistry of Materials, 2021, 33(16): 6383-6393.
[11] [11] YANG Y, LIU S M, KIMURA K. A facile chemical solution route to convert bulk cuprous iodide into nanoparticles[J]. Chemistry Letters, 2005, 34(7): 902-903.
[12] [12] YANG M, XU J Z, XU S, et al. Preparation of porous spherical CuI nanoparticles[J]. Inorganic Chemistry Communications, 2004, 7(5): 628-630.
[17] [17] YAO H B, WANG Y J, LUO G S. A size-controllable precipitation method to prepare CeO2 nanoparticles in a membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(17): 4993-4999.
[18] [18] TAO S, YANG M, CHEN H H, et al. Continuous synthesis of Ag/AgCl/ZnO composites using flow chemistry and photocatalytic application[J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3263-3273.
[20] [20] KLOCHKO N P, BARBASH V A, KLEPIKOVA K S, et al. Highly hydrophobic surfaces with rose petal-effect based on nanocellulose films coated by nanostructured CuI layers[J]. Cellulose, 2021, 28(14): 9395-9412.
[21] [21] KUCHIBHATLA S V N T, KARAKOTI A S, BERA D, et al. One dimensional nanostructured materials[J]. Progress in Materials Science, 2007, 52(5): 699-913.
[22] [22] SIRIMANNE P M, SENEVIRATHNA M I, PREMALAL E A, et al. Enhancement of the photoproperties of solid-state TiO2|dye|CuI cells by coupling of two dyes[J]. Semiconductor Science and Technology, 2006, 21(6): 818-821.
[23] [23] MEZYK S P, TATEISHI M, MACFARLANE R, et al. pKa of the hydrazinium ion and the reaction of hydrogen atoms with hydrazine in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92(14): 2541-2545.
[24] [24] ZENKOVETS G A, SHUTILOV R A, GAVRILOV V Y. The state of copper ions in aqueous and aqueous ammonia solutions of copper acetate[J]. Russian Journal of Inorganic Chemistry, 2018, 63(11): 1511-1518.
Get Citation
Copy Citation Text
ZHAN Sijin, YOU Li, LIU Fei, WANG Shihan, HU Guotao, YANG Xiaojian, ZHANG Dan, WANG Xianwei. Microreactor Strategy for Morphology Modulation of γ-CuI[J]. Journal of Synthetic Crystals, 2023, 52(10): 1887
Category:
Received: Apr. 6, 2023
Accepted: --
Published Online: Oct. 28, 2023
The Author Email: Sijin ZHAN (457020730@qq.com)
CSTR:32186.14.