Infrared and Laser Engineering, Volume. 51, Issue 3, 20220152(2022)

Review of chalcogenide glass integrated photonic devices (Invited)

Zhen Yang... Yuefeng Wang, Huimin Jin, Zhiyuan Wang, Peipeng Xu*, Wei Zhang, Weiwei Chen and Shixun Dai |Show fewer author(s)
Author Affiliations
  • Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
  • show less
    References(120)

    [1] S E Miller. Integrated optics: An introduction. The Bell System Technical Journal, 48, 2059-2069(1969).

    [2] A Jenkins. The road to nanophotonics. Nature Photonics, 2, 258-260(2008).

    [3] B Jalali, S Fathpour. Silicon photonics. Journal of Lightwave Technology, 24, 4600-4615(2006).

    [4] R G Hunsperger, J R Meyer-Arendt. Integrated optics: Theory and technology. Applied Optics, 31, 298(1992).

    [5] L Eldada, L W Shacklette. Advances in polymer integrated optics. IEEE Journal of Selected Topics in Quantum Electronics, 6, 54-68(2000).

    [6] A Boes, B Corcoran, L Chang, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser & Photonics Reviews, 12, 1700256(2018).

    [7] H Ma, A Y Jen, L R Dalton. Polymer‐based optical waveguides: Materials, processing, and devices. Advanced Materials, 14, 1339-1365(2002).

    [8] M Kawachi. Silica waveguides on silicon and their application to integrated-optic components. Optical and Quantum Electronics, 22, 391-416(1990).

    [9] G Roelkens, L Liu, D Liang, et al. III-V/silicon photonics for on‐chip and intra-chip optical interconnects. Laser & Photonics Reviews, 4, 751-779(2010).

    [10] [10] Chrostowski L, Hochberg M. Silicon Photonics Design: From Devices to Systems [M]. Cambridge: Cambridge University Press, 2015.

    [11] C Wang, M Zhang, X Chen, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [12] Y Hida, H Onose, S Imamura. Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm. IEEE Photonics Technology Letters, 5, 782-784(1993).

    [13] [13] He Sailing, Dai Daoxin. MicroNano Photonic Integration [M]. Beijing: Science Press, 2010. (in Chinese)

    [14] [14] Cai Chun. Study on ⅲⅴ group semiconduct MQW planar waveguide optical device[D]. Nanjing: Southeast University, 2004. (in Chinese)

    [15] J Leuthold, C Koos, W Freude. Nonlinear silicon photonics. Nature Photonics, 4, 535-544(2010).

    [16] Q Liu, J M Ramirez, V Vakarin, et al. On-chip Bragg grating waveguides and Fabry-Perot resonators for long-wave infrared operation up to 8.4 µm. Optics Express, 26, 34366-34372(2018).

    [17] M Long, A Gao, P Wang, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Science Advances, 3, e1700589(2017).

    [18] [18] Jian Jialing, Ye Yuting, Li Junying, et al. Recent progress of micronano photonic devices based on chalcogenide glasses[J]. Journal of The Chinese Ceramic Society, 2021, 49(12): 2676. (in Chinese)

    [19] J F Viens, C Meneghini, A Villeneuve, et al. Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses. Journal of Lightwave Technology, 17, 1184(1999).

    [20] M R Krogstad, S Ahn, W Park, et al. Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths. IEEE Photonics Technology Letters, 28, 2720-2723(2016).

    [21] T Han, S Madden, D Bulla, et al. Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography. Optics Express, 18, 19286-19291(2010).

    [22] H Lin, L Li, Y Zou, et al. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. Optics Letters, 38, 1470-1472(2013).

    [23] T Sabapathy, A Ayiriveetil, A K Kar, et al. Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass. Optical Materials Express, 2, 1556-1561(2012).

    [24] S Madden, D Y Choi, D Bulla, et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Optics Express, 15, 14414-14421(2007).

    [25] J Hu, N N Feng, N Carlie, et al. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. Optics Express, 18, 1469-1478(2010).

    [26] P Jean, A Douaud, V Michaud-Belleau, et al. Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides. Optics Letters, 45, 2830-2833(2020).

    [27] P Jean, A Douaud, S T Bah, et al. Universal micro-trench resonators for monolithic integration with silicon waveguides. Optical Materials Express, 11, 2753-2767(2021).

    [28] D G Kim, S Han, J Hwang, et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nature Communications, 11, 1-7(2020).

    [29] J Hwang, D-G Kim, S Han, et al. Supercontinuum generation in As2S3 waveguides fabricated without direct etching. Optics Letters, 46, 2413-2416(2021).

    [30] B Zhang, P Zeng, Z Yang, et al. On-chip chalcogenide microresonators with low-threshold parametric oscillation. Photonics Research, 9, 1272-1279(2021).

    [31] X Gai, S Madden, D Y Choi, et al. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1 m−1 at 1550 nm. Optics Express, 18, 18866-18874(2010).

    [32] X Gai, D Y Choi, S Madden, et al. Polarization-independent chalcogenide glass nanowires with anomalous dispersion for all-optical processing. Optics Express, 20, 13513-13521(2012).

    [33] Y Zhu, L Wan, Z Chen, et al. Effects of shallow suspension in low-loss waveguide-integrated chalcogenide microdisk resonators. Journal of Lightwave Technology, 38, 4817-4823(2020).

    [34] J Hu, V Tarasov, N Carlie, et al. Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films. Optical Materials, 30, 1560-1566(2008).

    [35] Q Du, Y Huang, J Li, et al. Low-loss photonic device in Ge–Sb–S chalcogenide glass. Optics Letters, 41, 3090-3093(2016).

    [36] [36] Huang Y, Xia D, Zeng P, et al. Engineered raman lasing in photonic integrated chalcogenide micresonats [J]. arXiv preprint arXiv, 2021: 210711719.

    [37] R Zhang, Z Yang, M Zhao, et al. High quality, high index-contrast chalcogenide microdisk resonators. Optics Express, 29, 17775-17783(2021).

    [38] Z Yang, R Zhang, Z Wang, et al. High-Q, submicron-confined chalcogenide microring resonators. Optics Express, 29, 33225-33233(2021).

    [39] Q Du, Z Luo, H Zhong, et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Research, 6, 506-510(2018).

    [40] M Grayson, M Zohrabi, K Bae, et al. Enhancement of third-order nonlinearity of thermally evaporated GeSbSe waveguides through annealing. Optics Express, 27, 33606(2019).

    [41] N S Abdel-Moneim, C J Mellor, T M Benson, et al. Fabrication of stable, low optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip. Optical and Quantum Electronics, 47, 351-361(2015).

    [42] A L Gaeta, M Lipson, T J Kippenberg. Photonic-chip-based frequency combs. Nature Photonics, 13, 158-169(2019).

    [43] H Shang, M Zhang, D Sun, et al. Optical characterization of Ge11.5As24S64.5 glass for an on-chip supercontinuum. Applied Optics, 60, 5451-5455(2021).

    [44] [44] Zeng P, Xia D, Yang Z, et al. HighQ GeAsS Micring Resonats based on improved fabrication process f optical parametric amplifier [C]Proceedings of the CLEO: Applications Technology, 2020.

    [45] [45] Chiles J, Malinowski M, Rao A, et al. Lowloss, submicron chalcogenide integrated photonics with chline plasma etching[J]. Applied Physics Letters, 2015, 106(11): 111110.

    [46] D Xia, Y Huang, B Zhang, et al. Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser & Photonics Reviews, 2100443(2022).

    [47] X Gai, D Y Choi, S Madden, et al. Supercontinuum generation in the mid-infrared from a dispersion-engineered As 2 S 3 glass rib waveguide. Optics Letters, 37, 3870-3872(2012).

    [48] P Ma, D Y Choi, Y Yu, et al. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Optics Express, 21, 29927-29937(2013).

    [49] P Ma, D Y Choi, Y Yu, et al. High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing. Optics Express, 23, 19969-19979(2015).

    [50] W Shen, P Zeng, Z Yang, et al. Chalcogenide glass photonic integration for improved 2 μm optical interconnection. Photonics Research, 8, 1484-1490(2020).

    [51] [51] Lin H, Zou Y, Danto S, et al. infrared As2Se3 chalcogenide glassonsilicon waveguides [C]Proceedings of the The 9th International Conference on Group IV Photonics (GFP), IEEE, 2012.

    [52] Y Yu, X Gai, P Ma, et al. Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Optics Letters, 41, 958-961(2016).

    [53] [53] Lin H, Xiang Y, Li L, et al. HighQ infrared chalcogenide glass resonats f chemical sensing [C]Proceedings of the 2014 IEEE Photonics Society Summer Topical Meeting Series, IEEE, 2014.

    [54] Z Han, P Lin, V Singh, et al. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Applied Physics Letters, 108, 141106(2016).

    [55] P Su, Z Han, D Kita, et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector. Applied Physics Letters, 114, 051103(2019).

    [56] M Pi, C Zheng, H Zhao, et al. Mid-infrared ChG-on-MgF2 waveguide gas sensor based on wavelength modulation spectroscopy. Optics Letters, 46, 4797-4800(2021).

    [57] F Tittel. Environmental trace gas detection using laser spectroscopy. Applied Physics B, 67, 273-273(1998).

    [58] I M Craig, M S Taubman, A S Lea, et al. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser. Optics Express, 21, 30401-30414(2013).

    [59] M R Robinson, R P Eaton, D M Haaland, et al. Noninvasive glucose monitoring in diabetic patients: A preliminary evaluation. Clinical Chemistry, 38, 1618-1622(1992).

    [60] J Charrier, M-L Brandily, H Lhermite, et al. Evanescent wave optical micro-sensor based on chalcogenide glass. Sensors and Actuators B: Chemical, 173, 468-476(2012).

    [61] A Gutierrez-Arroyo, E Baudet, L Bodiou, et al. Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. Optics Express, 24, 23109-23117(2016).

    [62] A Gutierrez-Arroyo, E Baudet, L Bodiou, et al. Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared. Sensors and Actuators B: Chemical, 242, 842-848(2017).

    [63] V Mittal, M Nedeljkovic, D J Rowe, et al. Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy. Optics Letters, 43, 2913-2916(2018).

    [64] M Pi, C Zheng, J Ji, et al. Surface-enhanced infrared absorption spectroscopic chalcogenide waveguide sensor using a silver island film. ACS Applied Materials & Interfaces, 13, 32555-32563(2021).

    [65] M Pi, C Zheng, R Bi, et al. Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect. Sensors and Actuators B: Chemical, 297, 126732(2019).

    [66] R Zegadi, N Lorrain, L Bodiou, et al. Enhanced mid-infrared gas absorption spectroscopic detection using chalcogenide or porous germanium waveguides. Journal of Optics, 23, 035102(2021).

    [67] Y Wang, W Chen, P Wang, et al. Ultra-high-power-confinement-factor integrated mid-infrared gas sensor based on the suspended slot chalcogenide glass waveguide. Sensors and Actuators B: Chemical, 347, 130466(2021).

    [68] P Xu, Z Yu, X Shen, et al. High quality factor and high sensitivity chalcogenide 1D photonic crystal microbridge cavity for mid-infrared sensing. Optics Communications, 382, 361-365(2017).

    [69] V Nalivaiko, M Ponomareva. Optical grating waveguide sensors based оn chalcogenide glasses. Optics and Spectroscopy, 126, 439-442(2019).

    [70] W Huang, Y Luo, W Zhang, et al. High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator. Infrared Physics & Technology, 103792(2021).

    [71] X Zhang, C Zhou, Y Luo, et al. High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses. Optics Express, 30, 3866-3875(2022).

    [72] M R Lamont, B Luther-Davies, D Y Choi, et al. Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide. Optics Express, 16, 14938-14944(2008).

    [73] [73] Yeom D I, Mägi E C, Lamont M R, et al. Lowthreshold supercontinuum generation in highly nonlinear chalcogenide nanowires [J]. Optics Letters, 2008, 33(7): 660662.

    [74] [74] Karim M, Rahman B, Agrawal G P. Dispersion engineered Ge11.5As24Se64.5 nanowire f supercontinuum generation: A parametric study [J]. Optics Express, 2014, 22(25): 3102931040.

    [75] H Shang, D Sun, M Zhang, et al. On-chip detector based on supercontinuum generation in chalcogenide waveguide. Journal of Lightwave Technology, 39, 3890-3895(2021).

    [76] Y Yu, X Gai, T Wang, et al. Mid-infrared supercontinuum generation in chalcogenides. Optical Materials Express, 3, 1075-1086(2013).

    [77] Y Yu, X Gai, P Ma, et al. A broadband, quasi-continuous, mid‐infrared supercontinuum generated in a chalcogenide glass waveguide. Laser & Photonics Reviews, 8, 792-798(2014).

    [78] D Xia, Y Huang, B Zhang, et al. On-chip broadband mid-infrared supercontinuum generation based on Highly nonlinear chalcogenide glass waveguides. Frontiers in Physics, 9, 93(2021).

    [79] W Qiu, P T Rakich, H Shin, et al. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: A general framework of selection rules and calculating SBS gain. Optics Express, 21, 31402-31419(2013).

    [80] P T Rakich, P Davids, Z Wang. Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces. Optics Express, 18, 14439-14453(2010).

    [81] R Pant, C G Poulton, D Y Choi, et al. On-chip stimulated Brillouin scattering. Optics Express, 19, 8285-8290(2011).

    [82] I V Kabakova, R Pant, D Y Choi, et al. Narrow linewidth Brillouin laser based on chalcogenide photonic chip. Optics Letters, 38, 3208-3211(2013).

    [83] D Marpaung, B Morrison, M Pagani, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica, 2, 76-83(2015).

    [84] B Morrison, A Casas-Bedoya, G Ren, et al. Compact Brillouin devices through hybrid integration on silicon. Optica, 4, 847-854(2017).

    [85] J Song, X Guo, W Peng, et al. Stimulated Brillouin scattering in low-loss Ge25Sb10S65 chalcogenide waveguides. Journal of Lightwave Technology, 39, 5048-5053(2021).

    [86] B J Eggleton, C G Poulton, P T Rakich, et al. Brillouin integrated photonics. Nature Photonics, 13, 664-677(2019).

    [87] H Rong, S Xu, O Cohen, et al. A cascaded silicon Raman laser. Nature Photonics, 2, 170-174(2008).

    [88] P Latawiec, V Venkataraman, M J Burek, et al. On-chip diamond Raman laser. Optica, 2, 924-928(2015).

    [89] X Liu, C Sun, B Xiong, et al. Integrated continuous-wave aluminum nitride Raman laser. Optica, 4, 893-896(2017).

    [90] Z Fang, H Luo, J Lin, et al. Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. Optics Letters, 44, 5953-5956(2019).

    [91] F Vanier, M Rochette, N Godbout, et al. Raman lasing in As2S3 high-Q whispering gallery mode resonators. Optics Letters, 38, 4966-4969(2013).

    [92] F Vanier, Y A Peter, M Rochette. Cascaded Raman lasing in packaged high quality As2S3 microspheres. Optics Express, 22, 28731-28739(2014).

    [93] A V Andrianov, E A Anashkina. Tunable Raman lasing in an As2S3 chalcogenide glass microsphere. Optics Express, 29, 5580-5587(2021).

    [94] O Graydon. Birth of the programmable optical chip. Nat Photonics, 10, 1(2016).

    [95] D Loke, T Lee, W Wang, et al. Breaking the speed limits of phase-change memory. Science, 336, 1566-1569(2012).

    [96] C Ríos, M Stegmaier, P Hosseini, et al. Integrated all-photonic non-volatile multi-level memory. Nature Photonics, 9, 725-732(2015).

    [97] Q Zhang, Y Zhang, J Li, et al. Broadband nonvolatile photonic switching based on optical phase change materials: Beyond the classical figure-of-merit. Optics Letters, 43, 94-97(2018).

    [98] B Zhang, Y Sun, Y Xu, et al. Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide. Optics Letters, 46, 2828-2831(2021).

    [99] S Abdollahramezani, O Hemmatyar, H Taghinejad, et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189-1241(2020).

    [100] Z Fang, R Chen, J Zheng, et al. Non-volatile reconfigurable silicon photonics based on phase-change materials. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-17(2021).

    [101] [101] Nisar M S, Yang X, Lu L, et al. Onchip integrated photonic devices based on phase change materials [C]Proceedings of the Photonics, 2021.

    [102] C Rios, P Hosseini, C D Wright, et al. On‐chip photonic memory elements employing phase‐change materials. Advanced Materials, 26, 1372-1377(2014).

    [103] J Zheng, A Khanolkar, P Xu, et al. GST-on-silicon hybrid nanophotonic integrated circuits: A non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8, 1551-1561(2018).

    [104] P Xu, J Zheng, J K Doylend, et al. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics, 6, 553-557(2019).

    [105] Z Fang, J Zheng, A Saxena, et al. Non‐volatile reconfigurable integrated photonics enabled by broadband low‐loss phase change material. Advanced Optical Materials, 9, 2002049(2021).

    [106] W H Pernice, H Bhaskaran. Photonic non-volatile memories using phase change materials. Applied Physics Letters, 101, 171101(2012).

    [107] [107] Cheng Hongwei, Yu Zhenming, Zhang Tian, et al. Advances challenges of optical neural wks[J]. Chinese Journal of Lasers, 2020, 47(5): 0500004. (in Chinese)

    [108] J Feldmann, M Stegmaier, N Gruhler, et al. Calculating with light using a chip-scale all-optical abacus. Nature Communications, 8, 1-8(2017).

    [109] [109] Gallo M L, Sebastian A, Mathis R, et al. Mixedprecision inmemy computing [J]. Nature Electronics, 2018, 1(4): 246253.

    [110] C Ríos, N Youngblood, Z Cheng, et al. In-memory computing on a photonic platform. Science Advances, 5, eaau5759(2019).

    [111] J Feldmann, N Youngblood, M Karpov, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [112] J Feldmann, N Youngblood, X Li, et al. Integrated 256 cell photonic phase-change memory with 512-bit capacity. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-7(2020).

    [113] M Delaney, I Zeimpekis, D Lawson, et al. A new family of ultralow loss reversible phase‐change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Advanced Functional Materials, 30, 2002447(2020).

    [114] W Dong, H Liu, J K Behera, et al. Wide bandgap phase change material tuned visible photonics. Advanced Functional Materials, 29, 1806181(2019).

    [115] Y Zhang, J B Chou, J Li, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications, 10, 1-9(2019).

    [116] Y Zhang, C Fowler, J Liang, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 16, 661-666(2021).

    [117] X Yang, M S Nisar, W Yuan, et al. Phase change material enabled 2×2 silicon nonvolatile optical switch. Optics Letters, 46, 4224-4227(2021).

    [118] A Alquliah, M Elkabbash, J Cheng, et al. Reconfigurable metasurface-based 1×2 waveguide switch. Photonics Research, 9, 2104-2115(2021).

    [119] J Zheng, Z Fang, C Wu, et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Advanced Materials, 32, 2001218(2020).

    [120] H Zhang, L Zhou, L Lu, et al. Miniature multilevel optical memristive switch using phase change material. ACS Photonics, 6, 2205-2212(2019).

    CLP Journals

    [1] Wenlong CHE, Yue ZHANG, Jianxing ZHAO, Yinghao CAO, Yao ZHOU, Yinglin SONG, Jianhong ZHOU. Coupling efficiency of fiber-chalcogenide embedded optical waveguide[J]. Infrared and Laser Engineering, 2025, 54(1): 20240320

    Tools

    Get Citation

    Copy Citation Text

    Zhen Yang, Yuefeng Wang, Huimin Jin, Zhiyuan Wang, Peipeng Xu, Wei Zhang, Weiwei Chen, Shixun Dai. Review of chalcogenide glass integrated photonic devices (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220152

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Mid-infrared integrated optoelectronic technology

    Received: Mar. 8, 2022

    Accepted: --

    Published Online: Apr. 8, 2022

    The Author Email: Xu Peipeng (xupeipeng@nbu.edu.cn)

    DOI:10.3788/IRLA20220152

    Topics