Journal of Innovative Optical Health Sciences, Volume. 9, Issue 5, 1650037(2016)

High-throughput volumetric reconstruction for 3D wheat plant architecture studies

Wei Fang1, Hui Feng1, Wanneng Yang1,2,3, Lingfeng Duan3, Guoxing Chen4, Lizhong Xiong2, and Qian Liu1、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology 1037 Luoyu Rd. Wuhan 430074, P. R. China
  • 2National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research Huazhong Agricultural University Wuhan 430070, P. R. China
  • 3College of Engineering Huazhong Agricultural University Wuhan 430070, P. R. China
  • 4MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River Huazhong Agricultural University Wuhan 430070, P. R. China
  • show less
    References(30)

    [1] [1] R. Furbank, M. Tester, "Phenomics-technologies to relieve the phenotyping bottleneck," Trends Plant Sci. 16(12), 635 (2011).

    [2] [2] D. L. Kittock, R. A. Selley, C. J. Cain, B. B. Taylor, "Plant Population and Plant Height Effects on Pima Cotton Lint Yield1," Agron. J. 78(3), 534– 538 (1986).

    [3] [3] R. C. Sharma, "Tiller mortality and its relationship to grain yield in spring wheat," Field Crops Res. 41, 55–60 (1995).

    [4] [4] P. Chen, L. Jiang, C. Yu, W. Zhang, J. Wang, J. Wan, "The Identification and Mapping of a Tiller Angle QTL on Rice Chromosome 9," Crop Sci. 48 (5), 1799–1806 (2008).

    [5] [5] B. N. Otteson, M. Mergoum, J. K. Ransom, B. Schatz, "Tiller Contribution to Spring Wheat Yield under Varying Seeding and Nitrogen Management," Agron. J. 100(2), 406–413 (2008).

    [6] [6] Y. Jiao, Y. Wang, D. Xue, J. Wang, M. Yan, G. Liu, G. Dong, D. Zeng, Z. Lu, X. Zhu, Q. Qian, J. Li, "Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice," Nat. Genet. 42(6), 4 (2010).

    [7] [7] W. N. Yang, L. F. Duan, G. X. Chen, L. Z. Xiong, Q. Liu, "Plant phenomics and high-throughput phenotyping: Accelerating rice functional genomics using multidisciplinary technologies," Curr. Opin. Plant Biol. 16(2), 180–187 (2013).

    [8] [8] C. Granier, L. Aguirrezabal, K. Chenu, S. Cookson, M. Dauzat, P. Hamard, J. Thioux, G. Rolland, S. Bouchier-Combaud, A. Lebaudy, "PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit," New Phytol. 169(3), 623 (2006).

    [9] [9] A. Walter, H. Scharr, F. Gilmer, R. Zierer, K. Nagel, M. Ernst, A. Wiese, O. Virnich, M. Christ, B. Uhlig, "Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: A setup and procedure designed for rapid optical phenotyping of different plant species," New Phytol. 174(2), 447 (2007).

    [10] [10] M. Jansen, F. Gilmer, B. Biskup, K. Nagel, U. Rascher, A. Fischbach, S. Briem, G. Dreissen, S. Tittmann, S. Braun, I. De Jaeger, M. Metzlaff, U. Schurr, H. Scharr, A. Walter, "Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants," Funct. Plant Biol. 36(11), 902 (2009).

    [11] [11] M. Bylesjo, V. Segura, R. Soolanayakanahally, A. Rae, J. Trygg, P. Gustafsson, S. Jansson, N. Street, "LAMINA: A tool for rapid quantification of leaf size and shape parameters," BMC Plant Biol. 8, 82 (2008).

    [12] [12] W. Yang, X. Xu, L. Duan, Q. Luo, S. Chen, S. Zeng, Q. Liu, "High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography," Rev. Sci. Instrum. 82(2), 025102 (2011).

    [13] [13] L. Duan, W. Yang, C. Huang, Q. Liu, "A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice," Plant Methods 7, 44 (2011).

    [14] [14] C. Huang, W. Yang, L. Duan, N. Jiang, G. Chen, L. Xiong, Q. Liu, "Rice panicle length measuring system based on dual-camera imaging," Comput. Electron. Agric. 98, 8 (2013).

    [15] [15] A. Naeem, A. French, D. Wells, T. Pridmore, "Highthroughput feature counting and measurement of roots," Bioinf. 27(9), 1337 (2011).

    [16] [16] N. Yazdanbakhsh, J. Fisahn, "High throughput phenotyping of root growth dynamics, lateral root formation, root architecture and root hair development enabled by PlaRoM," Funct. Plant Biol. 36 (11), 938 (2009).

    [17] [17] A. Iyer-Pascuzzi, O. Symonova, Y. Mileyko, Y. Hao, H. Belcher, J. Harer, J. Weitz, P. Benfey, "Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems," Plant Physiol. 152(3), 1148 (2010).

    [18] [18] C. Reuzeau, J. Pen, V. Frankard, J. de Wolf, R. Peerbolte, W. Broekaert, "TraitMill: A discovery engine for identifying yield-enhancement genes in cereals," Mol. Plant Breed. 3, 7534 (2005).

    [19] [19] A. Hartmann, T. Czauderna, R. Hoffmann, N. Stein, F. Schreiber, "HTPheno: An image analysis pipeline for high-throughput plant phenotyping," BMC Bioinf. 12, 148 (2011).

    [20] [20] S. Paulus, H. Schumann, H. Kuhlmann, J. Leon, "High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants," Biosyst. Eng. 121(18), 1–11 (2014).

    [21] [21] K. Omasa, F. Hosoi, A. Konishi, "3D lidar imaging for detecting and understanding plant responses and canopy structure," J. Exp. Bot. 58(4), 881–898 (2007).

    [22] [22] G. Alenya, B. Dellen, C. Torras, "3d modelling of leaves from color and Tof data for robotized plant measuring," Robotics and Automation (ICRA), 2011 IEEE Int. Conf. pp. 3408–3414 (2011).

    [23] [23] M. P. Pound, A. P. French, E. H. Murchie, T. P. Pridmore, "Automated recovery of three-dimensional models of plant shoots from multiple color images," Plant Physiol. 166(4), 1688–1698 (2014).

    [24] [24] C. Bellasio, J. Olejníckova, R. Tesar, D. ebela, L. Nedbal, "Computer Reconstruction of Plant Growth and Chlorophyll Fluorescence Emission in Three Spatial Dimensions," Sensors 12(1), 1052– 1071 (2012).

    [25] [25] A. Paproki, X. Sirault, S. Berry, R. Furbank, J. Fripp, "A novel mesh processing based technique for 3D plant analysis," BMC Plant Biol. 12(1), 63 (2012).

    [26] [26] R. Clark, R. Maccurdy, J. Jung, J. Shaff, S. McCouch, D. Aneshansley, L. Kochian, "Threedimensional root phenotyping with a novel imaging and software platform," Plant Physiol. 156(10), 455 (2011).

    [27] [27] W. Yang, Z. Guo, C. Huang, L. Duan, G. Chen, N. Jiang, W. Fang, H. Feng, W. Xie, X. Lian, G. Wang, Q. Luo, Q. Zhang, Q. Liu, L. Xiong, "Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice," Nat Commun 5 (2014), DOI:10.1038/ncomms6087

    [28] [28] D. M. Woebbecke, G. E. Meyer, K. Von Bargen, D. A. Mortensen, "Shape features for identifying young weeds using image analysis," Am. Soc. Agric. Eng. Meet. (USA) 38(1), 271–281 (1994).

    [29] [29] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd Edition, Cambridge University Press, Cambridge (2004).

    [30] [30] A. Baumberg, A. Lyons, R. Taylor, "3D SOM-A commercial software solution to 3D scanning," Graph. Models 67(6), 476 (2005).

    Tools

    Get Citation

    Copy Citation Text

    Wei Fang, Hui Feng, Wanneng Yang, Lingfeng Duan, Guoxing Chen, Lizhong Xiong, Qian Liu. High-throughput volumetric reconstruction for 3D wheat plant architecture studies[J]. Journal of Innovative Optical Health Sciences, 2016, 9(5): 1650037

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 16, 2015

    Accepted: Mar. 22, 2016

    Published Online: Dec. 27, 2018

    The Author Email: Liu Qian (qianliu@mail.hust.edu.cn)

    DOI:10.1142/s1793545816500371

    Topics