Optics and Precision Engineering, Volume. 23, Issue 8, 2384(2015)
Explicit phase height model and its calibration
[1] [1] CHEN F, BROWN G, SONG M. Overview of three-dimensional shape measurement using optical methods [J]. Optical Engineering, 2000, 39(1): 10-22.
[2] [2] GORTHIC S S, RASTOGI P. Fringe projection techniques: Whither we are [J]. Optics and Lasers in Engineering, 2010, 48(2): 133-140.
[5] [5] SRINIVASAN V,LIU H C, HALIOUA M.Automated phase-measuring profilometry of 3-D diffuse objects [J].Applied Optics, 1984, 23(18): 3105-3108.
[6] [6] ZHANG S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques [J]. Optics and Lasers in Engineering, 2010, 48(2): 149-158.
[7] [7] HUANG H,DA F P. Novel phase unwrapping method for wavelet profilometry [J]. Chinese Journal of Scientific Instrument, 2012, 33(2): 397-404. (in Chinese)
[8] [8] ZHOU W S,SU X Y. A direct mapping algorithm for phase-measuring profilometry [J].Journal of Modern Optics, 1994, 41: 89-94.
[9] [9] ASUNDI A, ZHOU W. Unified calibration technique and its applications in optical triangular profilometry [J]. Applied Optics, 1999,38(16): 3556-3561.
[10] [10] XIAO Y S, CAO Y P, WU Y C. Improved algorithm for phase-to-height mapping in phase measuring profilometry [J]. Applied Optics, 2012, 51(8): 1149-1155.
[11] [11] GUO H, HE H, YU Y, et al. Least-squares calibration method for fringe projection profilometry [J].Optical Engineering, 2005, 44: 033603-033603.
[12] [12] TAVARES P J,VAZ M A. Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry [J]. Optics communications, 2007, 274(2): 307-314.
[13] [13] WEN Y F, LI S K, CHENG H B,et al.. Universal calculation formula and calibration method in Fourier transform profilometry [J]. Applied Optics, 2010, 49(34): 6563-6569.
[14] [14] YU CH, GUO H W. Analysis of data processing algorithms in depth calibration of fringe projection system [J]. Chinese Journal of Scientific Instrument, 2013, 34(8): 1855-1863. (in Chinese)
[15] [15] DU H, WANG Z Y. Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system [J]. Optics Letters, 2007, 32(16): 2438-2440.
[16] [16] CUI S C, ZHU X. A generalized reference-plane-based calibration method in optical triangular profilometry [J].Optics Express, 2009, 17(23): 20735-20746.
[17] [17] VO M, WANG Z, HOANG T,et al..Flexible calibration technique for fringe-projection-based three-dimensional imaging [J]. Optics Letters, 2010, 35(19): 3192-3194.
[18] [18] HUANG L, CHUA P S K, ASUNDI A. Least-squares calibration method for fringe projection profilometry considering camera lens distortion [J]. Applied Optics, 2010, 49(9): 1539-1548.
[19] [19] MA S D, ZHU R, QUAN C,et al.. Flexible structured-light-based three-dimensional profile reconstruction method considering lens projection-imaging distortion[J]. Applied Optics, 2012, 51(13): 2419-2428.
[20] [20] ZHANG Z Y. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[22] [22] ZHANG X, ZHU L M. Projector calibration from the camera image point of view [J]. Optical Engineering, 2009, 48(11): 117208.
[23] [23] ZHANG X, ZHU L M. Phase error model from Gamma distortion and Gamma calibration [J]. Acta Optica Sinica, 2012, 32 (4): 0412006. (in Chinese)
[24] [24] ZHANG X, ZHU L M, LI Y F, et al.. Generic non-sinusoidal fringe model and Gamma calibration in phase measuring profilometry[J]. Journal of the Optical Society of America A, 2012,29(6): 1047-1058.
Get Citation
Copy Citation Text
ZHANG Xu, LI Xiang, TU Da-wei. Explicit phase height model and its calibration[J]. Optics and Precision Engineering, 2015, 23(8): 2384
Received: Mar. 26, 2015
Accepted: --
Published Online: Oct. 22, 2015
The Author Email: Xu ZHANG (xuzhang@shu.edu.cn)