Journal of Terahertz Science and Electronic Information Technology , Volume. 21, Issue 1, 1(2023)

Design and applications of terahertz surface plasmon polaritons

NIU Zhaoran1, CAI Zhipeng2, and ZHANG Yan1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(81)

    [1] [1] ZENNECK J. über die fortpflanzung ebener elektromagnetischer wellen l.ngs einer ebenen leiterfl.che und ihre beziehung zur drahtlosen telegraphie[J]. Annalen der Physik, 1907,328(10):846-866.

    [2] [2] JEON T I, GRISCHKOWSKY D. THz Zenneck surface wave(THz surface plasmon) propagation on a metal sheet[J]. Applied Physics Letters, 2006,88(6):061113.

    [3] [3] MAIER S A. Plasmonics:fundamentals and applications[M]. New York:Springer, 2007.

    [4] [4] BARNES W L,DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003,424(6950):824-830.

    [5] [5] BARNES W L. Surface plasmon-polariton length scales: a route to sub-wavelength optics[J]. Journal of Optics A: Pure and Applied Optics, 2006,8(4):S87.

    [6] [6] SAXLER J, RIVAS J G, JANKE C, et al. Time-domain measurements of surface plasmon polaritons in the terahertz frequency range[J]. Physical Review B, 2004,69(15):155427.

    [7] [7] GONG Mufei,JEON T I,GRISCHKOWSKY D. THz surface wave collapse on coated metal surfaces[J]. Optics Express, 2009,17 (19):17088-17101.

    [8] [8] ZHANG Ying,LI Shaoxian,XU Quan,et al. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders[J]. Optics Express, 2017,25(13):14397-14405.

    [9] [9] FENG Yilin, CAO Lidan, ZHANG Yan. Design of compact terahertz surface plasmon polaritons devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020,27(1):1-5.

    [10] [10] SOMMERFELD A. Ueber die fortpflanzung elektrodynamischer wellen l.ngs eines drahtes[J]. Annalen der Physik, 1899,303(2):233-290.

    [11] [11] MCGOWAN R W, GALLOT G, GRISCHKOWSKY D. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides[J]. Optics Letters, 1999,24(20):1431-1433.

    [12] [12] VAN derValk N C J,PLANKEN P C M. Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires[J]. Applied Physics Letters, 2005,87(7):071106.

    [13] [13] TREIZEBRé A,AKALIN T,BOCQUET B. Planar excitation of Goubau transmission lines for THz bioMEMS[J]. IEEE Microwave and Wireless Components Letters, 2005,15(12):886-888.

    [14] [14] TREIZEBRé A, BOCQUET B, XU Yansheng, et al. New THz excitation of planar Goubau line[J]. Microwave and Optical Technology Letters, 2008,50(11):2998-3001.

    [15] [15] PENDRY J B, MARTIN-MORENO L, GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004,305(5685):847-848.

    [16] [16] GARCIA-VIDAL F J, MARTIN-MORENO L, PENDRY J B. Surfaces with holes in them: new plasmonic metamaterials[J]. Journal of Optics A:Pure and Applied Optics, 2005,7(2):S97.

    [17] [17] MARTīN-CANO D, NESTEROV M L, FERNANDEZ-DOMINGUEZ A I, et al. Domino plasmons for subwavelength terahertz circuitry[J]. Optics Express, 2010,18(2):754-764.

    [18] [18] SHEN Xiaopeng,CUI Tiejun,MARTIN-CANO D,et al. Conformal surface plasmons propagating on ultrathin and flexible films [J]. Proceedings of the National Academy of Sciences, 2013,110(1):40-45.

    [19] [19] NAIK G V,SHALAEV V M,BOLTASSEVA A. Alternative plasmonic materials: beyond gold and silver[J]. Advanced Materials, 2013,25(24):3264-3294.

    [20] [20] RIVAS J G,KUTTGE M,BOLIVAR P H,et al. Propagation of surface plasmon polaritons on semiconductor gratings[J]. Physical Review Letters, 2004,93(25):256804.

    [21] [21] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306 (5696):666-669.

    [22] [22] FEI Zhe,RODIN A S,ANDREEV G O,et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012,487(7405):82-85.

    [23] [23] ZAYATS A V,SMOLYANINOV I I,MARADUDIN A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005,408 (3-4):131-314.

    [24] [24] NG B, WU Jianfeng, HANHAM S M, et al. Spoof plasmon surfaces: a novel platform for THz sensing[J]. Advanced Optical Materials, 2013,1(8):543-548.

    [25] [25] WILLIAMS C R, ANDREWS S R, MAIER S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nature Photonics, 2008,2(3):175-179.

    [26] [26] LI Shanshan,JADIDI M M,MURPHY T E,et al. Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves[J]. Optics Express, 2013,21(6):7041-7049.

    [27] [27] KUMAR G,LI Shanshan,JADIDI M M,et al. Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars[J]. New Journal of Physics, 2013,15(8):085031.

    [28] [28] O'HARA J F, AVERITT R D, TAYLOR A J. Terahertz surface plasmon polariton coupling on metallic gratings[J]. Optics Express, 2004,12(25):6397-6402.

    [29] [29] MARTL M,DARMO J,UNTEREAINER K,et al. Excitation of terahertz surface plasmon polaritons on etched groove gratings[J]. JOSA B, 2009,26(3):554-558.

    [30] [30] ZHANG Ying, XU Yuehong, TIAN Chunxiu, et al. Terahertz spoof surface-plasmon-polariton subwavelength waveguide[J]. Photonics Research, 2018,6(1):18-23.

    [31] [31] YANG Tao,STANTCHEV R,ZHOU Yuan,et al. Investigation of terahertz surface plasmon modulation with optical injection of free carriers[J]. Optical Engineering, 2016,55(6):064109.

    [32] [32] DAZHANG L,CUNNINGHAM J,BYRNE M B,et al. On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors[J]. Applied Physics Letters, 2009,95(9):092903.

    [33] [33] W.CHTER M,NAGEL M,KURZ H. Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution[J]. Applied Physics Letters, 2009,95(4):041112.

    [34] [34] XU Yuehong, ZHANG Xueqian, TIAN Zhen, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Applied Physics Letters, 2015,107(2):021105.

    [35] [35] ZHU Wenqi,AGRAWAL A,NAHATA A. Direct measurement of the Gouy phase shift for surface plasmon-polaritons[J]. Optics Express, 2007,15(16):9995-10001.

    [36] [36] WANG Sen,ZHAO Feng,WANG Xinke,et al. Comprehensive imaging of terahertz surface plasmon polaritons[J]. Optics Express, 2014,22(14):16916-16924.

    [37] [37] WANG Xinke,WANG Sen,SUN Wenfeng,et al. Visualization of terahertz surface waves propagation on metal foils[J]. Scientific Reports, 2016,6(1):1-6.

    [38] [38] BLANCHARD F,DOI A,TANAKA T,et al. Real-time terahertz near-field microscope[J]. Optics Express, 2011,19(9):8277-8284. H.USLER G,HECKEL W. Light sectioning with large depth and high resolution[J]. Applied Optics, 1988,27(24):5165-5169.

    [39] [39] MITRA S, CHANAL M, CLADY R, et al. Millijoule femtosecond micro-Bessel beams for ultra-high aspect ratio machining[J].

    [40] [40] Applied Optics, 2015,54(24):7358-7365. DHOLAKIA K,.I.MáR T. Shaping the future of manipulation[J]. Nature Photonics, 2011,5(6):335-342.

    [41] [41] ORTIZ-AMBRIZ A, LOPEZ-AGUAYO S, KARTASHOV Y V, et al. Generation of arbitrary complex quasi-non-diffracting optical patterns[J]. Optics Express, 2013,21(19):22221-22231.

    [42] [42] HE Jingwen, WANG Xinke, HU Dan, et al. Generation and evolution of the terahertz vortex beam[J]. Optics Express, 2013, 21 (17): 20230-20239.

    [43] [43] YUAN Yangsheng, LEI Ting, LI Zhaohui, et al. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams[J]. Scientific Reports, 2017,7(1):1-7.

    [44] [44] BITMAN A,MOSHE I,ZALEVSKY Z. Improving depth-of field in broadband THz beams using nondiffractive Bessel beams[J]. Optics Letters, 2012,37(19):4164-4166.

    [45] [45] LIU Changming, NIU Liting, WANG Kejia, et al. 3D-printed diffractive elements induced accelerating terahertz Airy beam[J]. Optics Express, 2016,24(25):29342-29348.

    [46] [46] WANG Sen,WANG Shuyun,ZHANG Yan. Polarization-based dynamic manipulation of Bessel-like surface plasmon polaritons beam[J]. Optics Express, 2018,26(5):5461-5468.

    [47] [47] LI Heting, WANG Xinke, WANG Sen, et al. Realization and characterization of terahertz surface plasmon light capsules[J]. Applied Physics Letters, 2019,114(9):091110.

    [48] [48] SU Xiaoqiang, XU Quan, LU Yongchang, et al. Gradient index devices for terahertz spoof surface plasmon polaritons[J]. ACS Photonics, 2020,7(12):3305-3312.

    [49] [49] WANG Sen,WANG Xinke,KAN Qiang,et al. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons[J]. Applied Physics Letters, 2015,107(24):243504.

    [50] [50] WANG Zhuo, LI Shiqing, ZHANG Xueqian, et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces[J]. Advanced Science, 2020,7(19):2000982.

    [51] [51] FERNáNDEZ-DOMīNGUEZ A I, MORENO E, MARTartīN-MORENO L, et al. Terahertz wedge plasmon polaritons[J]. Optics letters, 2009,34(13):2063-2065.

    [52] [52] FERNáNDEZ-DOMīNGUEZ A I, MORENO E, MARTartīN-MORENO L, et al. Guiding terahertz waves along subwavelength channels[J]. Physical Review B, 2009,79(23):233104.

    [53] [53] TIAN Lili, ZHANG Zhenhui, LIU Jianlong, et al. Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves[J]. Optics Express, 2016,24(25):28693-28703.

    [54] [54] PING Richeng,MA Hong,CAI Yang. Compact and highly-confined spoof surface plasmon polaritons with fence-shaped grooves [J]. Scientific Reports, 2019,9(1):1-6.

    [55] [55] YE Longfang,FENG Hao,CAI Guoxiong,et al. High-efficient and low-coupling spoof surface plasmon polaritons enabled by Vshaped microstrips[J]. Optics Express, 2019,27(16):22088-22099.

    [56] [56] YUAN Mingrui, LU Yongchang, ZHANG Ying, et al. Curved terahertz surface plasmonic waveguide devices[J]. Optics Express, 2020,28(2):1987-1998.

    [57] [57] YUAN Mingrui, LI Yanfeng, LU Yongchang, et al. High-performance and compact broadband terahertz plasmonic waveguide intersection[J]. Nanophotonics, 2019,8(10):1811-1819.

    [58] [58] MAIER S A, ANDREWS S R, MARTIN-MORENO L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 2006,97(17):176805.

    [59] [59] JAISWAL R K,PANDITandit N,PATHAK N P. Spoof surface plasmon polaritons based reconfigurable band-pass filter[J]. IEEE Photonics Technology Letters, 2018,31(3):218-221.

    [60] [60] YE Longfang,ZHANG Wei,OFORI-OKAI B K,et al. Super subwavelength guiding and rejecting of terahertz spoof SPPs enabled by planar plasmonic waveguides and notch filters based on spiral-shaped units[J]. Journal of Lightwave Technology, 2018, 36(20):4988-4994.

    [61] [61] XU Kaida, GUO Yingjiang, DENG Xianjin. Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves[J]. Optics Express, 2019,27(4):4354-4363.

    [62] [62] GAO Xi, SHI Jinhui, MA Huifeng, et al. Dual-band spoof surface plasmon polaritons based on composite-periodic gratings[J]. Journal of Physics D:Applied Physics, 2012,45(50):505104.

    [63] [63] GAO Xi,SHI Jinhui,SHEN Xiaopeng,et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies[J]. Applied Physics Letters, 2013,102(15):151912.

    [64] [64] GAN Qiaoqiang,FU Zhan,DING Yujie J,et al. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures[J]. Physical Review Letters, 2008,100(25):256803.

    [65] [65] CAO Lidan, ZHANG Yan. Light controlled surface plasmon polaritons switch based on a gradient metal grating[J]. Optics Communications, 2018(424):103-106.

    [66] [66] ISLAM M,CHOWDHURY D R,AHMAD A,et al. Terahertz plasmonic waveguide based thin film sensor[J]. Journal of Lightwave Technology, 2017,35(23):5215-5221.

    [67] [67] DHRITI K M,KUMAR G. Study of resonant modes for sensing in a multimode planar plasmonic terahertz waveguide[C]// 2019 Workshop on Recent Advances in Photonics(WRAP). Guwahati:IEEE, 2019:1-3.

    [68] [68] ISLAM M,BARBHUYAN M E. Slow-light application using dielectrics in a metallic terahertz plasmonic waveguide[J]. JOSA A, 2020,37(6):1053-1059.

    [69] [69] CHENG Bohan,YE Yusiou,LAN Yungchiang,et al. Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating[J]. Scientific Reports, 2017,7(1):1-9.

    [70] [70] ZHAO Tao,HU Min,ZHONG Renbin,et al. Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam[J]. Applied Physics Letters, 2017,110(23):231102.

    [71] [71] LAN Yung-chiang, SHEN Chia-hui, CHEN Chih-min. Electron cyclotron motion excited surface plasmon and radiation with orbital angular momentum on a semiconductor thin film[J]. Scientific Reports, 2020,10(1):1-11.

    [72] [72] HUANG Xianjun, ZHANG Xiao, HU Zhirun, et al. Design of broadband and tunable terahertz absorbers based on graphene metasurface:equivalent circuit model approach[J]. IET Microwaves, Antennas & Propagation, 2015,9(4):307-312.

    [73] [73] LIU Huaiqing,REN Guobin,GAO Yixiao,et al. Tunable terahertz plasmonic perfect absorber based on T-shaped InSb array[J]. Plasmonics, 2016,11(2):411-417.

    [74] [74] YAO Gang, LING Furi, YUE Jin, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express, 2016,24(2):1518-1527.

    [75] [75] BIABANIFARD M, ABRISHAMIAN M S. Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons[J]. AEU-International Journal of Electronics and Communications, 2018(95):256-263.

    [76] [76] Fu, CHENG Yongzhi, LUO Hui. tunable terahertz metamaterial absorber based on single-layer 4):860. compleCHENmentary.-shapedgraphene[J].MateriaAls,2020,13(broadband

    [77] [77] CORREAS-SERRANO D,GOMEZ-DIAZ J S,PERRUISSEAU-CARRIER J,et al. Graphene-based plasmonic tunable low-pass filters in the terahertz band[J]. IEEE Transactions on Nanotechnology, 2014,13(6):1145-1153.

    [78] [78] LUO Xin,ZHAI Xiang,WANG Lingling,et al. Tunable terahertz narrow-band plasmonic filter based on optical Tamm plasmon in dual-section InSb slot waveguide[J]. Plasmonics, 2017,12(2):509-514.

    [79] [79] DMITRIEV V, MELO G, CASTRO W. Tunable THz switch-filter based on magneto-plasmonic graphene nanodisk[J]. IEEE Transactions on Magnetics, 2021,57(5):1-9.

    [80] [80] ZHU Jiaqi,RUAN Banxian,YOU Qi,et al. Terahertz imaging sensor based on the strong coupling of surface plasmon polaritons between PVDF and graphene[J]. Sensors and Actuators B:Chemical, 2018(264):398-403.

    [81] [81] ZHANG Zhaojian, YANG Junbo, HE Xin, et al. Tunable plasmon-induced transparency and slow light in terahertz chipscale semiconductor plasmonic waveguides[J]. Journal of Physics D:Applied Physics, 2020,53(31):315101.

    Tools

    Get Citation

    Copy Citation Text

    NIU Zhaoran, CAI Zhipeng, ZHANG Yan. Design and applications of terahertz surface plasmon polaritons[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 12, 2022

    Accepted: --

    Published Online: Mar. 14, 2023

    The Author Email: Yan ZHANG (yzhang@cnu.edu.cn)

    DOI:10.11805/tkyda2022018

    Topics