Laser & Optoelectronics Progress, Volume. 58, Issue 17, 1700001(2021)

Research Progress of Mid Infrared Laser via Intra-Pulse Difference Frequency Generation of Femtosecond Laser

Qing Wang1,2,3、*, Lei Qi1,2,3, Runyu Wang1,2,3, and Yan Li1,2,3
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Information Photonics Technology, Ministry of Industry and Information Technology, Beijing 100081, China
  • 3Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education, Beijing 100081, China
  • show less
    Figures & Tables(17)
    Schematic spectrum of Ti∶sapphire femtosecond laser
    Schematic spectrum of intra-pulse difference frequency idler laser
    Phase mismatch diagram at specific phase matching angles[35]
    Principle and phase mismatch diagrams of cascaded optical parametric process. (a) Principle of cascaded optical parametric process[20]; (b) phase mismatch diagram of cascaded optical parametric process[20]
    Ti∶sapphire chirp pulse amplification (CPA) system,structure diagram of MIR output generation by Ti∶sapphire CPA system driving,and spectrum of MIR output. (a) Ti∶sapphire CPA system[41]; (b) structure diagram of MIR output generation by Ti∶sapphire CPA system driving[40]; (c) spectrum of MIR output[40]
    Structure for dual-wavelength OPA and intra-pulse DFG[43]
    Time domain electric field of MIR output and output spectra. (a) Time domain electric field of MIR output[43]; (b) spectra of MIR output[43]
    Structure of thin disk laser driving source, and spectrum of MIR output. (a) Structure of thin disk laser driving source[32]; (b) spectrum of MIR output[32]
    Spectrum of MIR output of intra-pulse DFG by Yb∶ YAG thin disk laser driving [7]
    Structure of intra-pulse DFG based on Cr∶ZnS Kerr-lens mode-locked laser[20]
    Output spectra obtained based on GaSe crystal. (a) Output spectra of numerical simulation and experiment[20];
    Spectrum of MIR output obtained based on ZGP crystal[17]
    Experimental structure of intra-pulse DFG based on Er-doped fiber amplification[52]
    • Table 1. Main parameters of intra-pulse DFG operations based on Ti∶sapphire laser

      View table

      Table 1. Main parameters of intra-pulse DFG operations based on Ti∶sapphire laser

      WorkInstituteIntra-pulse DFG crystalRange of MIR spectrum distribution /μm

      Nonlinear

      conversion efficiency /%

      140Institute of Physics CAS4H-SiC3.9‒5.60.05
      234Max-Planck Institute of Quantum OpticsBBO1.0‒2.54
      342University of Central FloridaBIBO1.8‒4.20.26
      442University of Central FloridaKTA2.2‒5.00.03
      535Xidian UniversityBBO1.3‒2.5
      643The University of TokyoLGS4.6‒110.07
    • Table 2. Main parameters of intra-pulse DFG operations based on solid femtosecond lasers operating at 1 μm

      View table

      Table 2. Main parameters of intra-pulse DFG operations based on solid femtosecond lasers operating at 1 μm

      WorkInstituteDriving sourceIntra-pulse DFG crystalRange of MIR spectrum distribution /μmNonlinear conversion efficiency /%
      132Max-Planck Institute of Quantum OpticsYb∶YAG thin disk laserLGS6.8‒16.40.2
      246University of MunichYb∶YAG thin disk laserLGS8.4‒11
      37Max-Planck Institute of Quantum OpticsYb∶YAG thin disk laserLGS6.5‒110.16
      447The University of TokyoYb∶KGW amplifierKTA1.4‒2
    • Table 3. Main parameters of intra-pulse DFG operations based on solid femtosecond lasers operating at 2 μm

      View table

      Table 3. Main parameters of intra-pulse DFG operations based on solid femtosecond lasers operating at 2 μm

      WorkInstituteDriving sourceIntra-pulse DFG crystalRange of MIR spectrum distribution /μmNonlinear conversion efficiency /%
      114Max-Planck Institute of Quantum OpticsHo∶YAG thin disk laserGaSe4.5‒200.34
      215Max-Planck Institute of Quantum OpticsHo∶YAG thin disk laserZnSe/ZnS (Polycrystalline)

      2.7‒20

      2.7‒15

      0.23

      0.31

      348Institute of Physics of the Czech Academy of Sciences2.1 μm OPCPAAGSe7‒100.8
      416-1820Max-Planck Institute of Quantum OpticsCr∶ZnS mode locked laserGaSeZGP

      2‒17

      2.8‒12.5

      0.459.5
      519IPG companyCr∶ZnS mode locked laserGaSeZGP

      4.6‒16.6

      5.8‒12.5

      0.223
    • Table 4. Main parameters of intra-pulse DFG operations based on fiber laser

      View table

      Table 4. Main parameters of intra-pulse DFG operations based on fiber laser

      WorkInstituteDriving sourceIntra-pulse DFG crystalRange of MIR spectrum distribution /μm

      Nonlinear

      conversion efficiency /%

      133National Institute of Standards and TechnologyEr∶Fiber mode-locked laserOP-GaP4‒120.07
      251National Institute of Standards and TechnologyEr∶Fiber mode-locked laserPPLN,OP-GaP, GaSe3‒27<0.013
      352Institute of Physics of the Czech Academy of SciencesEO combPPLNOP-GaP

      3.1‒4.3

      7‒11

      0.01

      0.012

      453University of JenaTm∶Fiber laserGaSe

      3.7‒18

      7.3‒16.5

      0.63

      1.8

      554-55Max-Planck Institute of Quantum Optics1.9 μm fiber laserGaSe6‒181.7
    Tools

    Get Citation

    Copy Citation Text

    Qing Wang, Lei Qi, Runyu Wang, Yan Li. Research Progress of Mid Infrared Laser via Intra-Pulse Difference Frequency Generation of Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1700001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Dec. 2, 2020

    Accepted: Jan. 2, 2021

    Published Online: Aug. 30, 2021

    The Author Email: Wang Qing (qingwang@bit.edu.cn)

    DOI:10.3788/LOP202158.1700001

    Topics