Semiconductor Optoelectronics, Volume. 42, Issue 6, 767(2021)
Research Progresses of Laser Diodes with kHz Linewidth
[1] [1] Soda H, Kotaki Y, Sudo H, et al. Stability in single longitudinal mode operation in GaInAs/InP phase adjusted DFB lasers[J]. IEEE J. Quantum Electron., 1987, 23: 804-814.
[2] [2] Okai M, Tsuchiya T, Uomi K, et al. Corrugation-pitch-modulated MQW-DFB laser with narrow spectral linewidth (170kHz)[J]. IEEE Photon. Technol. Lett., 1990, 2(8): 529-530.
[3] [3] Spiessberger S, Schiemangk M, Wicht A, et al. Narrow linewidth DFB lasers emitting near a wavelength of 1064nm[J]. IEEE J. Lightwave Technol., 2010, 28(17): 2611-2616.
[4] [4] Morin M, Ayotte S, Latrasse C, et al. What narrow-linewidth semiconductor lasers can do for defense and security?[J]. Proc. SPIE, 2010, 7677: 76770N.
[5] [5] Idjadi M H, Aflatouni F. Nanophotonic phase noise filter in silicon[J]. Nature Photon., 2020, 14: 234-239.
[6] [6] Spieβberger S, Schiemangk M, Wicht A, et al. DBR laser diodes emitting near 1064nm with a narrow intrinsic linewidth of 2kHz[J]. Appl. Phys. B, 2011, 104: 813-818.
[7] [7] Huang D, Tran M A, Guo Joel, et al. High-power sub-kHz linewidth lasers fully integrated on silicon[J]. Optica, 2019, 6(6): 745-752.
[8] [8] Wang X, Wang Y, Flueckiger J, et al. Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings[J]. Opt. Lett., 2014, 39(19): 5519-5522.
[9] [9] Wang X, Shi W, Yun H, et al. Narrowband waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process[J]. Opt. Express, 2012, 20(14): 15547-15558.
[10] [10] Tan D T H, Ikeda K, Fainman Y. Cladding-modulated Bragg gratings in silicon waveguides[J]. Opt. Lett., 2009, 34(9): 1357-1359.
[11] [11] Coldren L A, Corzine S W, Mashanovitch M L. Diode Lasers and Photonic Integrated Circuits[M]. New York: John Wiley & Sons, 2012.
[12] [12] Shin D K, Henson B M, Khakimov R I, et al. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0~1.1μm[J]. Opt. Express, 2016, 24(24): 27403-27414.
[13] [13] Luvsandamdin E, Kurbis C, Schiemangk M, et al. Micro-integrated extended cavity diode laser for precision potassium spectroscopy in space[J]. Opt. Express, 2014, 22(7): 7790-7798.
[14] [14] Liang W, Eliyahu D, Savchenkov A, et al. A low-RIN spectrally pure whispering-gallery-mode resonator-based semiconductor laser[J]. IEEE Photon. Technol. Lett., 2018, 30(22): 1933-1936.
[15] [15] Morton P A, Morton M J. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing[J]. J. of Lightwave Technol., 2018, 36(21): 5048-5057.
[16] [16] Juodawlkis P W, Plant J J, ODonnell F J, et al. Narrow-linewidth, high-power 1556nm slab-coupled optical waveguide external-cavity laser[C]// Conf. on Lasers & Electro-Optics, 2005: 411-413.
[17] [17] Juodawlkis P W, Plant J J, Loh William, et al. High-power, low-noise 1.5μm slab-coupled optical waveguide (SCOW) emitters: Physics, devices, and applications[J]. IEEE J. of Sel. Top. in Quantum Electron., 2011, 17(6): 1698-1713.
[19] [19] Kobayashi N, Sato K, Namiwaka M, et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers[J]. J. of Lightwave Technol., 2015, 33(6): 1241-1246.
[20] [20] Boller K-J, Rees Avan, Fan Y, et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits[J]. Photon., 2020, 7(4): 1-33.
[21] [21] Sia J X B, Li X, Wang W J, et al. Sub-kHz linewidth, hybrid Ⅲ-Ⅴ/silicon wavelength-tunable laser diode operating at the application-rich 1647~1690nm[J]. Opt. Express, 2020, 28(17): 25215-25224.
[22] [22] McKinzie K A, Wang C, Noman A A, et al. InP high power monolithically integrated widely tunable laser and SOA array for hybrid integration[J]. Opt. Express, 2021, 29(3): 3490-3502.
Get Citation
Copy Citation Text
WANG Tao. Research Progresses of Laser Diodes with kHz Linewidth[J]. Semiconductor Optoelectronics, 2021, 42(6): 767
Category:
Received: Aug. 15, 2021
Accepted: --
Published Online: Feb. 14, 2022
The Author Email: