Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1323001(2023)

Graphene Ultra-Broadband Perfect Absorber with Slit Structure

Tao Liu, Xingxin Cheng, Zigang Zhou*, and Yongjia Yang**
Author Affiliations
  • School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • show less
    References(48)

    [1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [2] Yin X X, Baghai-Wadji A, Zhang Y C. A biomedical perspective in terahertz nano-communications: a review[J]. IEEE Sensors Journal, 22, 9215-9227(2022).

    [3] Liu W W, Zhang Z L, Su Q et al. Interdigitated photoconductive antenna-based two-color femtosecond laser filamentation THz time-domain spectral detection[J]. Optics Express, 30, 18562-18570(2022).

    [4] Zhang X Q, Xu Q, Xia L B et al. Terahertz surface plasmonic waves: a review[J]. Advanced Photonics, 2, 014001(2020).

    [5] Chen C X, Chai M Q, Jin M H et al. Terahertz metamaterial absorbers[J]. Advanced Materials Technologies, 7, 2101171(2022).

    [6] Sung S, Dabironezare S, Llombart N et al. Optical system design for noncontact, normal incidence, THz imaging of in vivo human cornea[J]. IEEE Transactions on Terahertz Science and Technology, 8, 1-12(2018).

    [7] Wu X L, Zheng Y, Luo Y et al. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity[J]. Physical Chemistry Chemical Physics: PCCP, 23, 26864-26873(2021).

    [8] Cheng Y Y, Wang Y X, Niu Y Y et al. Concealed object enhancement using multi-polarization information for passive millimeter and terahertz wave security screening[J]. Optics Express, 28, 6350-6366(2020).

    [9] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [10] Huang M H, Wei K H, Wu P H et al. Terahertz broadband absorber based on a combined circular disc structure[J]. Micromachines, 12, 1290(2021).

    [11] Zheng Z P, Zheng Y, Luo Y et al. Terahertz perfect absorber based on flexible active switching of ultra-broadband and ultra-narrowband[J]. Optics Express, 29, 42787-42799(2021).

    [12] Bing P B, Guo X Y, Wang H et al. Characteristic analysis of a photoexcited tunable metamaterial absorber for terahertz waves[J]. Journal of Optics, 48, 179-183(2019).

    [13] Ning J, Chen K, Zhao W B et al. An ultrathin tunable metamaterial absorber for lower microwave band based on magnetic nanomaterial[J]. Nanomaterials, 12, 2135(2022).

    [14] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [15] Beheshti Asl A, Pourkhalil D, Rostami A et al. A perfect electrically tunable graphene-based metamaterial absorber[J]. Journal of Computational Electronics, 20, 864-872(2021).

    [16] Theodosi A, Tsilipakos O, Soukoulis C M et al. 2D-patterned graphene metasurfaces for efficient third harmonic generation at THz frequencies[J]. Optics Express, 30, 460-472(2022).

    [17] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 6, 749-758(2012).

    [18] Zhang R Y, Luo Y H, Xu J K et al. Structured vanadium dioxide metamaterial for tunable broadband terahertz absorption[J]. Optics Express, 29, 42989-42998(2021).

    [19] Han J Z, Chen R S. Tunable broadband terahertz absorber based on a single-layer graphene metasurface[J]. Optics Express, 28, 30289-30298(2020).

    [20] Ma L M, Xu H, Liu Y H et al. Broadband terahertz absorber based on graphene metamaterial[J]. Acta Optica Sinica, 42, 0923001(2022).

    [21] Shen H Y, Liu F X, Liu C Y et al. A polarization-insensitive and wide-angle terahertz absorber with ring-porous patterned graphene metasurface[J]. Nanomaterials, 10, 1410(2020).

    [22] Fardoost A, Vanani F G, Amirhosseini A et al. Design of a multilayer graphene-based ultrawideband terahertz absorber[J]. IEEE Transactions on Nanotechnology, 16, 68-74(2017).

    [23] Xie T, Chen D B, Yang H P et al. Tunable broadband terahertz waveband absorbers based on fractal technology of graphene metamaterial[J]. Nanomaterials, 11, 269(2021).

    [24] Feng H, Xu Z X, Li K et al. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials[J]. Optics Express, 29, 7158-7167(2021).

    [25] Lan J X, Zhang R X, Bai H et al. Tunable broadband terahertz absorber based on laser-induced graphene[J]. Chinese Optics Letters, 20, 073701(2022).

    [26] Yu X Y, Yang S, Fan D Y. Design of tunable polarization insensitive terahertz absorber[J]. Laser & Optoelectronics Progress, 59, 0316004(2022).

    [27] Gong J, Zong R, Li H et al. Dynamically tunable broadband terahertz metamaterial absorber based on vanadium dioxide[J]. Laser & Optoelectronics Progress, 58, 0316001(2021).

    [28] Zheng Z P, Zheng Y, Luo Y et al. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection[J]. Physical Chemistry Chemical Physics: PCCP, 24, 2527-2533(2022).

    [29] Chen H T. Interference theory of metamaterial perfect absorbers[J]. Optics Express, 20, 7165-7172(2012).

    [30] Yang D Q, Zhang C, Ju X C et al. Multi-resonance and ultra-wideband terahertz metasurface absorber based on micro-template-assisted self-assembly method[J]. Optics Express, 28, 2547-2556(2020).

    [31] Zhuo S S, Zhou F Q, Liu Y L et al. Terahertz multimode modulator based on tunable triple-plasmon-induced transparency in monolayer graphene metamaterials[J]. Journal of the Optical Society of America A, 39, 594-599(2022).

    [32] Xu B Z, Gu C Q, Li Z et al. A novel structure for tunable terahertz absorber based on graphene[J]. Optics Express, 21, 23803-23811(2013).

    [33] Andryieuski A, Lavrinenko A V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach[J]. Optics Express, 21, 9144-9155(2013).

    [34] Chen Z H, Chen H, Yin J K et al. Multi-band, tunable, high figure of merit, high sensitivity single-layer patterned graphene: perfect absorber based on surface plasmon resonance[J]. Diamond and Related Materials, 116, 108393(2021).

    [35] Xue Z, Zhang H T, Yang M S et al. Tunable broad-spectral terahertz absorber based on graphic graphene[J]. Laser & Optoelectronics Progress, 59, 0530002(2022).

    [36] Liu Y, Huang R, Ouyang Z B. Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene[J]. Optics Express, 29, 20839-20850(2021).

    [37] Qian J J, Zhou J, Zhu Z et al. Polarization-insensitive broadband THz absorber based on circular graphene patches[J]. Nanomaterials, 11, 2709(2021).

    [38] Lü Y S, Liu W, Tian J P et al. Broadband terahertz metamaterial absorber and modulator based on hybrid graphene-gold pattern[J]. Physica E: Low-Dimensional Systems and Nanostructures, 140, 115142(2022).

    [39] Deng B C, Guo Q S, Li C et al. Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures[J]. ACS Nano, 10, 11172-11178(2016).

    [40] Liu W, Lv Y S, Tian J P et al. A compact metamaterial broadband THz absorber consists of graphene crosses with different sizes[J]. Superlattices and Microstructures, 159, 107038(2021).

    [41] Li Z Y, Yi Z, Liu T et al. Three-band perfect absorber with high refractive index sensing based on an active tunable Dirac semimetal[J]. Physical Chemistry Chemical Physics: PCCP, 23, 17374-17381(2021).

    [42] Zheng Z P, Luo Y, Yang H et al. Thermal tuning of terahertz metamaterial absorber properties based on VO2[J]. Physical Chemistry Chemical Physics: PCCP, 24, 8846-8853(2022).

    [43] Chen H, Chen Z H, Yang H et al. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene[J]. RSC Advances, 12, 7821-7829(2022).

    [44] Liu Z M, Guo L, Zhang Q M. Analytical method for designing tunable terahertz absorbers with the desired frequency and bandwidth[J]. Optics Express, 29, 39777-39787(2021).

    [45] Li T, Chen H, Sun H A, Yang X T et al. Microtopography-guided chessboard-like structure for a broadband terahertz absorber[J]. ACS Applied Electronic Materials, 4, 2822-2830(2022).

    [46] Zhang M, Song Z Y. Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption[J]. Optics Express, 29, 21551-21561(2021).

    [47] Bordbar A, Basiry R, Yahaghi A. Design and equivalent circuit model extraction of a broadband graphene metasurface absorber based on a hexagonal spider web structure in the terahertz band[J]. Applied Optics, 59, 2165-2172(2020).

    [48] Amin M, Siddiqui O, Abutarboush H et al. A THz graphene metasurface for polarization selective virus sensing[J]. Carbon, 176, 580-591(2021).

    Tools

    Get Citation

    Copy Citation Text

    Tao Liu, Xingxin Cheng, Zigang Zhou, Yongjia Yang. Graphene Ultra-Broadband Perfect Absorber with Slit Structure[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1323001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Feb. 6, 2023

    Accepted: Apr. 3, 2023

    Published Online: Jun. 29, 2023

    The Author Email: Zhou Zigang (zhouzigang1973@163.com), Yang Yongjia (Yangyong.jia@163.com)

    DOI:10.3788/LOP230572

    Topics