Journal of Innovative Optical Health Sciences, Volume. 10, Issue 3, 1750007(2017)
NDC-IVM: An automatic segmentation of optic disc and cup region from medical images for glaucoma detection
[1] [1] B. N. Kumar, R. Chauhan, N. Dahiya, Detection of Glaucoma using image processing techniques: A review, in microelectronics, IEEE 2016 Int. Conf. Computing and Communications (MicroCom). Durgapur, India.
[2] [2] M. S. Haleem et al., “Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review, ” Comput. Med. Imaging Graph. 37 (7), 581–596 (2013).
[3] [3] D. D. Patil, R. Manza, G. C. Bedke, “Diagnose Glaucoma by proposed image processing methods, ” Int. J. Comput. Appl. 106 (8) (2014).
[4] [4] K. P. Noronha et al., “Automated classification of glaucoma stages using higher order cumulant features, ” Biomed. Signal Process. Control 10, 174–183 (2014).
[5] [5] I. C. Campbell et al., “Automated segmentation of the lamina cribrosa using Frangi’s filter: A novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated structure in the eye, ” J. R. Soc. Interface 12 (104), 20141009 (2015).
[6] [6] G. Jayanthi, G. M. A. Sagayee, S. Arumugam, “Glaucoma detection in retinal image using medial axis detection and level set method, ” Int. J. Comput. Appl. 93 (3), 42–48 (2014).
[7] [7] M. C. V. S. Mary et al., “An empirical study on optic disc segmentation using an active contour model, ” Biomed. Signal Process. Control 18, 19–29 (2015).
[8] [8] S. Niu et al., “Robust noise region-based active contour model via local similarity factor for image segmentation, ” Pattern Recognit. 61, 104–119 (2017).
[9] [9] A. Mondal, S. Ghosh, A. Ghosh, Robust global and local fuzzy energy based active contour for image segmentation, Appl. Soft Comput. 47, 191–215 (2016).
[10] [10] K. Chaudhary, P. Maheshwari, S. Wadhwa, Glaucoma detection using cross validation algorithm: A comparitive evaluation on rapidminer, 2014 IEEE Conf. Norbert Wiener in the 21st Century (21CW). Boston, MA, USA.
[11] [11] M. R. K. Mookiah et al., “Automated glaucoma identification using retinal fundus images: A hybrid texture feature extraction paradigm, ” Image Anal. Model. Ophthalmol. 9–22 (2014).
[12] [12] J. Ayub et al., Glaucoma detection through optic disc and cup segmentation using K-mean clustering, 2016 Int. Conf. Computing, Electronic and Electrical Engineering (ICE Cube). Quetta, Pakistan.
[13] [13] S. Naz and S. N. Rao, “Glaucoma detection in color fundus images using cup to disc ratio, ” Int. J. Eng. Sci. 3, 51–58 (2014).
[14] [14] M. B. Wankhade, A. Gurjar, C. Sipna, “Detection of retinal blood vessels for disease diagnosis, ” Int. J. Eng. Sci. 3 (3), 6–12 (2016).
[15] [15] U. M. Akram and S. A. Khan, “Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy, ” J. Med. Syst. 36 (5), 3151–3162 (2012).
[16] [16] I. Jamal, M. U. Akram, A. Tariq, “Retinal image preprocessing: Background and noise segmentation, ” Telecommun. Comput. Electron. Control (TELKOMNIKA), 10 (3), 537–544 (2012).
[17] [17] T. M. G. Devi, S. Sudha, P. Suraj, Glaucoma detection from retinal images, 2015 2nd Int. Conf. Electronics and Communication Systems (ICECS) (Coimbatore, India, 2015).
[18] [18] N. A. Vijapur, R. S. R. Kunte, Glaucoma detection by using Pearson-R correlation filter, 2015 Int. Conf. Communications and Signal Processing (ICCSP). Melmaruvathur, India.
[19] [19] A. Singh et al., “Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image, ” Comput. Methods Programs Biomed. 124, 108–120 (2016).
[20] [20] S. I. Niwas et al., “Cross-examination for angle-closure glaucoma feature detection, ” IEEE J. Biomed. Health Inf. 20 (1), 343–354 (2016).
[21] [21] S. Maheshwari, R. B. Pachori, U. R. Acharya, “Automated diagnosis of Glaucoma using empirical wavelet transform and correntropy features extracted from fundus images, ” IEEE J. Biomed. Health Info. (2016).
[22] [22] X. Chen et al., Automatic feature learning for Glaucoma detection based on deep learning, 18th International Conference Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Munich, Germany, October 5–9, 2015, Proc. Part III, N. Navab et al., eds. (Springer International Publishing, Cham. 2015), pp. 669–677.
[23] [23] M. Jayaram, H. Fleyeh, “Convex hulls in image processing: A scoping review, ” Am. J. Intell. Syst. 6 (2), 48–58 (2016).
[24] [24] S. Samanta et al., Haralick features based automated glaucoma classification using back propagation neural network, Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014 (Springer, 2015).
[25] [25] T. Devasia, P. Jacob, T. Thomas, “Automatic optic disc localization and segmentation using swarm intelligence, ” World Comput. Sci. Inf. Technol. J. 5 (6), 92–97 (2015).
[26] [26] D. Paul, S. Priya, T. A. Kumar, GMM clustering based segmentation and optic nervehead geometry detection from OCT nervehead images, 2015 Global Conf. Communication Technologies (GCCT). Thuckalay, India.
[27] [27] P. S. Mittapalli, G. B. Kande, “Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma, ” Biomed. Signal Process. and Control 24, 34–46 (2016).
[28] [28] M. K. Dutta et al., “An efficient image processing based technique for comprehensive detection and grading of nonproliferative diabetic retinopathy from fundus images, ” Comput. Methods Biomechan. Biomed. Eng. Imaging Vis. 1–13 (2015). ISI,
[29] [29] S. I. Niwas et al., “Automated anterior segment OCT image analysis for Angle Closure Glaucoma mechanisms classification, ” Comput. Methods Programs Biomed. 130, 65–75 (2016).
[30] [30] S. I. Niwas et al., “Complex wavelet based quality assessment for AS-OCT images with application to Angle Closure Glaucoma diagnosis, ” Comput. Methods Programs Biomed. 130, 13–21 (2016).
[31] [31] A. Issac, M. Partha Sarathi, M. K. Dutta, “An adaptive threshold based image processing technique for improved glaucoma detection and classification, ” Comput. Methods Programs Biomed. 122 (2), 229–244 (2015).
[32] [32] S. S. Abirami, S. G. Shoba, “Glaucoma images classification using Fuzzy Min-Max neural network based on data-core, ” Int. J. Sci. Mod. Eng. 1 (7), 9–15 (2013).
[33] [33] J. Cheng et al., “Sparse dissimilarity-constrained coding for glaucoma screening, ” IEEE Trans. Biomed. Eng. 62 (5), 1395–1403 (2015).
[34] [34] Y. Zhao et al., “Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images, ” IEEE Trans. Med. Imaging 34 (9), 1797–1807 (2015).
Get Citation
Copy Citation Text
Umarani Balakrishnan. NDC-IVM: An automatic segmentation of optic disc and cup region from medical images for glaucoma detection[J]. Journal of Innovative Optical Health Sciences, 2017, 10(3): 1750007
Received: Oct. 5, 2016
Accepted: Jan. 16, 2017
Published Online: Dec. 27, 2018
The Author Email: Balakrishnan Umarani (umabkv@gmail.com)