Journal of the Chinese Ceramic Society, Volume. 50, Issue 11, 2951(2022)
Monoethanolamine-Intensified Dissociation of WO3·H2O Microplates to Fabricate Flexible WOx Electrochromic Devices
[4] [4] WANG L K, LIU Y, HAN G R, et al. Controllable synthesis of hexagonal WO3 nanorod-cluster films with high electrochromic performance in NIR range[J]. J Alloys Compd, 2021, 890: 161833.
[6] [6] HUANG Y, WANG B S, CHEN F X, et al. Electrochromic materials based on ions insertion and extraction[J]. Adv Opt Mater, 2021, 10(4): 2101783.
[7] [7] Eh A L S, TAN A W M, CHENG X, et al. Recent advances in flexible electrochromic devices: Prerequisites, challenges, and prospects[J]. Energy Technol, 2018, 6(1): 33-45.
[9] [9] WANG Y N, MENG Z H, CHEN H, et al. Pulsed electrochemical deposition of porous WO3 on silver networks for highly flexible electrochromic devices[J]. J Mater Chem C, 2019, 7(7):1966-1973.
[10] [10] POLYAKOV B, BUTANOVS E, OGURCOVS A, et al. Unraveling the structure and properties of layered and mixed ReO3-WO3 thin films deposited by reactive DC magnetron sputtering[J]. ACS Omega, 2022, 7(2): 1827-1837.
[11] [11] ZHAO W K, ZHAO Y, YANG Y, et al. Direct regulation of O/W stoichiometric ratio and microstructure in tungsten oxide electrochromic films by Ar pressure using oxide target sputtering[J]. Phys Status Solidi A, 2020, 217(8): 1900999.
[12] [12] LI H Z, CHEN J W, CUI M Q, et al. Spray coated ultrathin films from aqueous tungsten molybdenum oxide nanoparticle ink for high contrast electrochromic applications[J]. J Mater Chem C, 2016, 4(1): 33-38.
[13] [13] LI H Z, MCRAE L, FIRBY C J, et al. Rechargeable aqueous electrochromic batteries utilizing Ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes[J]. Adv Mater, 2019, 31(15): 1807065.
[15] [15] LI F, GONG H Y, WANG Y, et al. Enhanced activity, durability and anti-poisoning property of Pt/W18O49 for methanol oxidation with a sub-stoichiometric tungsten oxide W18O49 support[J]. J Mater Chem A, 2014, 2(47): 20154-20163.
[16] [16] LAMIRE M, LABBE P, GOREAUD M, et al. Refinement et nouvelle analyse de la structure de W18O49[J]. Rev Chim Miner, 1987, 24: 369-381.
[17] [17] WANG M, XING X, PEREPICHKA I F, et al. Electrochromic smart windows can achieve an absolute private state through thermochromically engineered electrolyte[J]. Adv Energy Mater, 2019, 9(21): 1900433.
[18] [18] ZHEN Y P, JELLE B P, GAO T. Electrochromic properties of WO3 thin films: The role of film thickness[J]. Anal Sci Adv, 2020, 1(2): 124-131.
[19] [19] BESSINGER D, MUGGLI K, BEETZ M, et al. Fast-switching vis-IR electrochromic covalent organic frameworks[J]. J Am Chem Soc, 2021, 143(19): 7351-7357.
[20] [20] ZHANG J, TU J P, XIA X H, et al. Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance[J]. J Mater Chem, 2011, 21(14): 5492-5498.
[21] [21] QI Y Y, QIN K Y, ZOU Y J, et al. Flexible electrochromic thin films with ultrafast responsion based on exfoliated V2O5 nanosheets/graphene oxide via layer-by-layer assembly[J]. Appl Surf Sci, 2020, 514: 145950.
[22] [22] PURUSHOTHAMAN K K, MURALIDHARAN G, VIJAYAKUMAR S. Sol-Gel coated WO3 thin films based complementary electrochromic smart windows[J]. Mater Lett, 2021, 296: 129881.
[23] [23] LV X J, XU L B, QIAN L, et al. A conjugated copolymer bearing imidazolium-based ionic liquid: electrochemical synthesis and electrochromic properties[J]. Chinese J Polym Sci, 2021, 39: 537-544.
[24] [24] MOHAMMAD-HOSSEINPOUR M, YOURDKHANI A, POURSALEHI R. Fast-switching electrochromic response of WO3·2H2O of plate-like particles synthesized by liquid phase deposition[J]. J Alloys Compd, 2021, 879: 160418.
[25] [25] ZHAO Q, FANG Y S, QIAO K, et al. Printing of WO3/ITO nanocomposite electrochromic smart windows[J]. Sol Energy Mater Sol Cells, 2019, 194(A1-A4): 95-102.
[26] [26] MERCIER D, ROUCHAUD J, BARTHES-LABROUSSE M G. Interaction of amines with native aluminum oxide layers in non-aqueous environment: Application to the understanding of the formation of epoxy-amine/metal interphases[J]. Appl Surf Sci, 2008(20), 30: 6495-6503.
[27] [27] CHARU G, JAVAID S, SUBHO M. Amine-terminated ionic liquid modified magnetic graphene oxide (MGO-IL-NH2): A highly efficient and reusable nanocatalyst for the synthesis of 3-Amino alkylated indoles[J]. Chem Select, 2020, 5(14): 4337-4346.
[28] [28] YOU L Z, LIU B, LIU T, et al. Organic solar cells based on WO2.72 nanowire anode buffer layer with enhanced power conversion efficiency and ambient stability[J]. ACS Appl Mater Interfaces, 2017, 9(14): 12629-12636.
[29] [29] CHANG Y H, WANG Z G, SHI Y E, et al. Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun[J]. J Mater Chem A, 2018, 6(23): 10939-10946.
[30] [30] OSPINA R, ESCOBAR-RINCN, ARANGO P J, et al. Structural and chemical composition analysis of WCN produced by pulsed vacuum arc discharge[J]. Surf Coat Technol, 2013, 232: 96-100.
[31] [31] ROO J D, YAZDANI N, DRIJVERS E, et al. Probing solvent-ligand interactions in colloidal nanocrystals by the NMR line broadening[J]. Chem Mater, 2018, 30(15): 5485-5492.
[32] [32] CHEN Z X, XIE Q N, DING J X, et al. Instant postsynthesis aqueous dispersion of Sb-Doped SnO2 nanocrystals: The synergy between small-molecule amine and sb dopant ratio[J]. ACS Appl Mater Interfaces, 2020, 12(26): 29937-29945.
[33] [33] HENS Z, MARTINS J C. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals[J]. Chem Mater, 2013, 25(8): 1211-1221.
Get Citation
Copy Citation Text
DING Juxuan, CAO Shicheng, LI Afei, WANG Can, HU Chengzhi, CHEN Zhangxian. Monoethanolamine-Intensified Dissociation of WO3·H2O Microplates to Fabricate Flexible WOx Electrochromic Devices[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2951
Category:
Received: May. 17, 2022
Accepted: --
Published Online: Jan. 27, 2023
The Author Email: Juxuan DING (juxding@163.com)