Journal of the Chinese Ceramic Society, Volume. 51, Issue 10, 2680(2023)
Low Grade Limonite Tailings Combined Catalyst for Formaldehyde Purification at Room Temperature
[1] [1] HUANG S D, WEI W J, WESCHLER L B, et al. Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors[J]. Sci Total Environ, 2017, 590-591: 394-405.
[2] [2] ZHANG J H, LI Y B, ZHANG Y, et al. Effect of support on the activity of Ag-based catalysts for formaldehyde oxidation[J]. Sci Rep, 2015, 5: 12950.
[3] [3] GUO J H, LIN C X, JIANG C J, et al. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature[J]. Appl Surf Sci, 2019, 475: 237-255.
[4] [4] ZHANG J H, LI Y B, WANG L, et al. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catal Sci Technol, 2015, 5(4): 2305-2313.
[5] [5] WANG Z, WANG W Z, ZHANG L, et al. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature[J]. Catal Sci Technol, 2016, 6(11): 3845-3853.
[6] [6] QUIROZ J, GIRAUDON J M, GERVASINI A, et al. Total oxidation of formaldehyde over MnOx-CeO2 catalysts: The effect of acid treatment[J]. ACS Catal, 2015, 5(4): 2260-2269.
[8] [8] LIN H Q, CHEN D, LIU H B, et al. Effect of MnO2 crystalline structure on the catalytic oxidation of formaldehyde[J]. Aerosol Air Qual Res, 2017, 17(4): 1011-1020.
[9] [9] ZHANG J H, LI Y B, WANG L, et al. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catal Sci Technol, 2015, 5(4): 2305-2313.
[10] [10] WANG C, HAN Z Y, ZOU X H, et al. Ultrathin MnO2-coated FeOOH catalyst for indoor formaldehyde oxidation at ambient temperature: New insight into surface reactive oxygen species and In-field testing in an air cleaner[J]. Environ Sci Technol, 2022, 56(15): 10963-10976.
[11] [11] WANG C, CHEN T H, LIU H B, et al. Promotional catalytic oxidation of airborne formaldehyde over mineral-supported MnO2 at ambient temperature[J]. Appl Clay Sci, 2019, 182: 105289.
[12] [12] LI D Y, LI W H, DENG Y Z, et al. Effective Ti doping of δ-MnO2 via anion route for highly active catalytic combustion of benzene[J]. J Phys Chem C, 2016, 120(19): 10275-10282.
[13] [13] WANG J L, LI J G, JIANG C J, et al. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air[J]. Appl Catal B Environ, 2017, 204: 147-155.
[14] [14] YU J G, WANG S H, LOW J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Phys Chem Chem Phys, 2013, 15(39): 16883-16890.
[15] [15] LI J G, ZHANG P Y, WANG J L, et al. Birnessite-type manganese oxide on granular activated carbon for formaldehyde removal at room temperature[J]. J Phys Chem C, 2016, 120(42): 24121-24129.
[16] [16] WANG J L, ZHANG G K, ZHANG P Y. Layered birnessite-type MnO2 with surface pits for enhanced catalytic formaldehyde oxidation activity[J]. J Mater Chem A, 2017, 5(12): 5719-5725.
[17] [17] FANG R M, FENG Q Y, HUANG H B, et al. Effect of K+ ions on efficient room-temperature degradation of formaldehyde over MnO2 catalysts[J]. Catal Today, 2019, 327: 154-160.
[18] [18] WANG F, DAI H X, DENG J G, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene[J]. Environ Sci Technol, 2012, 46(7): 4034-4041.
[19] [19] ZHU L, JACOB D J, KEUTSCH F N, et al. Formaldehyde (HCHO) As a hazardous air pollutant: Mapping surface air concentrations from satellite and inferring cancer risks in the United States[J]. Environ Sci Technol, 2017, 51(10): 5650-5657.
[20] [20] WANG J L, YUNUS R, LI J G, et al. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature[J]. Appl Surf Sci, 2015, 357: 787-794.
[21] [21] JIA Y Z, KAI L Z, WEN K Z, et al. Enhanced the synergistic degradation effect between active hydroxyl and reactive oxygen species for indoor formaldehyde based on platinum atoms modified MnOOH/MnO2 catalyst[J]. J Colloid Interface Sci, 2022, 628: 359-370.
[22] [22] GUAN S N, LI W Z, MA J R, et al. A review of the preparation and applications of MnO2 composites in formaldehyde oxidation[J]. J Ind Eng Chem, 2018, 66: 126-140.
[23] [23] LI H W, HUANG T T, LU Y F, et al. Unraveling the mechanisms of room-temperature catalytic degradation of indoor formaldehyde and its biocompatibility on colloidal TiO2-supported MnOx-CeO2[J]. Environ Sci: Nano, 2018, 5(5): 1130-1139.
[24] [24] YUAN W J, ZHANG S P, WU Y Y, et al. Enhancing the room-temperature catalytic degradation of formaldehyde through constructing surface lewis pairs on carbon-based catalyst[J]. Appl Catal B Environ, 2020, 272: 118992.
[25] [25] LI H W, HO W, CAO J J, et al. Active complexes on engineered crystal facets of MnOx-CeO2 and scale-up demonstration on an air cleaner for indoor formaldehyde removal[J]. Environ Sci Technol, 2019, 53(18): 10906-10916.
[26] [26] ZHANG C, ZHANG J P, SHEN Y J, et al. Synergistic catalytic elimination of NOx and chlorinated organics: Cooperation of acid sites[J]. Environ Sci Technol, 2022, 56(6): 3719-3728.
[27] [27] WANG F, HE G Z, ZHANG B, et al. Insights into the activation effect of H2 pretreatment on Ag/Al2O3 catalyst for the selective oxidation of ammonia[J]. ACS Catal, 2019, 9(2): 1437-1445.
[28] [28] WANG M, ZHANG L X, HUANG W M, et al. The catalytic oxidation removal of low-concentration HCHO at high space velocity by partially crystallized mesoporous MnOx[J]. Chem Eng J, 2017, 320: 667-676.
Get Citation
Copy Citation Text
ZHOU Zhilin, CHEN Tianhu, WANG Can, HAN Zhengyan, ZOU Xuehua, LIU Haibo. Low Grade Limonite Tailings Combined Catalyst for Formaldehyde Purification at Room Temperature[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2680
Category:
Received: Mar. 22, 2023
Accepted: --
Published Online: Nov. 26, 2023
The Author Email: Zhilin ZHOU (2021170843@mail.hfut.edu.cn)
CSTR:32186.14.