Spectroscopy and Spectral Analysis, Volume. 42, Issue 9, 2657(2022)

Current Status and Future Perspective of Spectroscopy and Imaging Technique Applications in Bruise Detection of Fruits and Vegetables: A Review

Tong-tong ZHOU1,*... Xiao-lin SUN1,1;, Zhi-zhong SUN2,2;, He-huan PENG1,1;, Tong SUN1,1; and Dong HU1,1; *; |Show fewer author(s)
Author Affiliations
  • 11. College of Optical, Mechanical and Electrical Engineering, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
  • 22. College of Mathematics and Computer Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
  • show less
    Figures & Tables(5)
    Schematic diagram of fluorescence imaging system[32]
    (a) Hyper-spectral images of pear before and after normalization at 1 200 nm; (b) Average spectra of pear at 950~1 650 nm[43]
    Schematic diagram of spatial-frequency domain imaging system
    • Table 1. Comparison of the characteristics of different spectroscopy and imaging techniques for bruising detection of fruits and vegetables

      View table
      View in Article

      Table 1. Comparison of the characteristics of different spectroscopy and imaging techniques for bruising detection of fruits and vegetables

      检测技术优点缺点
      光谱技术近红外光谱[4]无损环保、 简单快速、 易于操作建模复杂、 模型通用性弱、 不具备空间信息
      拉曼光谱[5]准确性高、 无损快速高效、 具有更窄、 更清晰的分子峰特征样品准备复杂、 无法实时获取信息
      荧光光谱[6]高灵敏度、 快速、 无损、 装置成本低存在错峰重叠、 归属不明的问题
      成像技术机器视觉[7]效率高、 灵活性高、 工作时间长无法获取物体内部信息
      高光谱成像[8]图谱合一, 具备光谱和空间信息数据量大、 特征波段的选择和准确性不稳定
      空间频域成像[9]深度辨析、 信号增强需要选择特征波段、 实时性不高
      磁共振成像[10]快速直观, 能得到空间信息和不同切层图像信息设备成本较高、 成像速度较慢
      X射线成像[10]穿透能力强, 能反应内部特征成本相对较高, 对安装及安全要求严格
      热成像[11]成像速度快、 检测面积大对比度弱、 信噪比低、 高度依赖环境条件
    • Table 2. Application status of spectroscopy and imaging techniques for bruising detections of fruits and vegetables

      View table
      View in Article

      Table 2. Application status of spectroscopy and imaging techniques for bruising detections of fruits and vegetables

      检测技术检测对象损伤类型数据处理算法正确率/%文献
      近红外光谱苹果擦伤
      冷害
      PLS-DA
      ANN, SVM
      94.0~96.0
      98.3
      [20]
      [22]
      花椰菜腐烂PLS100[25]
      鸭梨黑心病
      黑心病
      PLS
      PLS
      100
      98.3
      [23]
      [24]
      梨枣碰伤PLS-LDA96.7[14]
      龙眼碰伤PLS-DA100[15]
      猕猴桃碰伤SPA-LSSVM98.2[13]
      橄榄碰伤PLS100[16]
      樱桃碰伤LSSVM93.3[18]
      番茄碰伤LSSVM98.4[17]
      拉曼光谱橄榄冻伤、 发酵SIMCA, PLS-DA, K-NN100, 97.0[27]
      荧光光谱苹果
      土豆
      擦伤
      擦伤
      PCA
      PCA
      -
      -
      [31]
      [31]
      荧光成像苹果碰伤M-value0.5 h: 86.7
      1 h后: 100
      [32]
      高光谱成像青椒冷害PLS-DA84.0[56]
      苹果碰伤
      瘀伤
      擦伤
      碰伤
      iPLS-DA
      WS
      SVM
      SVM
      92.4, 94.0
      99.5
      97.5
      97.3
      [51]
      [52]
      [53]
      [54]
      桃子擦伤PCA, WS96.6[36]
      早期擦伤PCA, WS96.5(损伤果)
      97.5(健康果)
      [39]
      冷害SVM, ANN99.3(二分类)
      96.1(三分类)
      85.4(四分类)
      [59]
      番茄开裂LDA, SVM94.6, 96.4[42]
      蓝莓瘀伤CARS-LSSVM12 h后: 95.0[48]
      瘀伤SVM94.0(训练集)
      92.0(测试集)
      [41]
      樱桃冷害BPNN83.3(冷冻果)
      94.6(健康果)
      [49]
      柑橘早期腐烂PCA, WS100(训练集)
      98.6(测试集)
      [37]
      瘀伤F-value92.0[44]
      马铃薯黑心病PLS-DA94.0[55]
      茄子冷害SVM100[50]
      青枣冷害LDA98.3(二分类)
      93.3(三分类)
      [44]
      黄瓜冷害SVM100(二分类)
      90.5(三分类)
      [45]
      空间频域成像苹果碰伤
      碰伤
      碰伤
      TPD
      SPT
      Otsu
      70~100
      -
      >85.8
      [60]
      [61]
      [62]
      磁共振成像鳄梨

      苹果
      瘀伤
      损伤体积
      水心病
      -
      DL
      -
      -
      -
      100
      [65]
      [66]
      [75]
      X射线成像苹果内部褐变
      内部褐变
      -
      -
      -
      -
      [69]
      [71]
      石榴内部损伤--[70]
      热成像
      蓝莓
      碰伤
      损伤
      A photothermal model
      LDA, SVM, RF, K-NN等
      -
      89.5
      [72]
      [73]
    Tools

    Get Citation

    Copy Citation Text

    Tong-tong ZHOU, Xiao-lin SUN, Zhi-zhong SUN, He-huan PENG, Tong SUN, Dong HU. Current Status and Future Perspective of Spectroscopy and Imaging Technique Applications in Bruise Detection of Fruits and Vegetables: A Review[J]. Spectroscopy and Spectral Analysis, 2022, 42(9): 2657

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 14, 2021

    Accepted: Dec. 15, 2021

    Published Online: Nov. 17, 2022

    The Author Email: ZHOU Tong-tong (zhoutt@stu.zafu.edu.cn)

    DOI:10.3964/j.issn.1000-0593(2022)09-2657-09

    Topics