Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1267(2024)
Enhanced Energy Storage Properties in Tm-Doped Antiferroelectric Ceramics by Engineering Grain Boundaries
[1] [1] XU Chenhong. Designing antiferroelctric ceramics used for pulse power capacitors and investigation on the pulse discharge process[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018.
[2] [2] WU Ruifang. Energy storage performance of lead-free antiferroelectric ceramics based on silver niobate[D]. Baoding: Hebei University, 2021.
[3] [3] HAO X H. A review on the dielectric materials for high energy-storage application[J]. J Adv Dielect, 2013, 3(1): 1330001.
[4] [4] LIANG Zhi. Research on XRAM pulsed power supply with high energy storage density[D]. Wuhan: Huazhong University of Science and Technology, 2022.
[5] [5] WEI Meng. Research on high voltage characteristics of pulse energy capacitor energy storage ceramic materials[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
[6] [6] LIU P, LI M Y, ZHANG Q F, et al. High thermal stability in PLZST anti-ferroelectric energy storage ceramics with the coexistence of tetragonal and orthorhombic phase[J]. J Eur Ceram Soc, 2018, 38(16): 5396-5401.
[7] [7] QIAO P X, ZHANG Y F, CHEN X F, et al. Enhanced energy storage properties and stability in (Pb0.895La0.07)(ZrxTi1-x)O3 antiferroelectric ceramics[J]. Ceram Int, 2019, 45(13): 15898-15905.
[8] [8] WANG X C, SHEN J, YANG T Q, et al. High energy-storage performance and dielectric properties of antiferroelectric (Pb0.97La0.02) (Zr0.5Sn0.5-xTix)O3 ceramic[J]. J Alloys Compd, 2016, 655: 309-313.
[9] [9] ZHOU Y X, XIA J K, CHEN X F, et al. Excellent energy-storage property and thermal stability of PLZT-based antiferroelectric ceramics[J]. J Am Ceram Soc, 2023, 106(1): 448-455.
[10] [10] WANG X Z, ZHU Q S, SUN H C, et al. Ultrahigh energy storage density and efficiency in PLZST antiferroelectric ceramics via multiple optimization strategy[J]. J Eur Ceram Soc, 2023, 43(9): 4051-4059.
[11] [11] LI S F, GE P Z, TANG H, et al. Energy storage and dielectric properties of PbHfO3 antiferroelectric ceramics[J]. ACS Appl Energy Mater, 2022, 5(10): 12174-12182.
[12] [12] CAO W J, LIN R J, HOU X, et al. Interfacial polarization restriction for ultrahigh energy-storage density in lead-free ceramics[J]. Adv Funct Materials, 2023, 33(29): 2301027.
[13] [13] HUANG K, GE G, YAN F, et al. Ultralow electrical hysteresis along with high energy storage density in lead-based antiferroelectric ceramics[J]. Adv Electron Mater, 2020, 6(4): 1901366.
[14] [14] BREVAL E, WANG C P, DOUGHERTY J P, et al. PLZT phases near lead zirconate: 1. determination by X-ray diffraction[J]. J Am Ceram Soc, 2005, 88(2): 437-442.
[15] [15] ZHANG S Y, LI W H, ZHANG Y S, et al. Large energy density and high efficiency achieved simultaneously in Bi(Mg0.5Hf0.5)O3-modified NaNbO3 ceramics[J]. Results Phys, 2023, 44: 106194.
[16] [16] LUO N N, HAN K, CABRAL M J, et al. Constructing phase boundary in AgNbO3 antiferroelectrics: Pathway simultaneously achieving high energy density and efficiency[J]. Nat Commun, 2020, 11(1): 4824.
[17] [17] ZHOU J, DU J H, CHEN L M, et al. Enhanced the energy storage performance in AgNbO3-based antiferroelectric ceramics via manipulation of oxygen vacancy[J]. J Eur Ceram Soc, 2023, 43(14): 6059-6068.
[18] [18] CHEN L M, ZHOU J, XU L Z, et al. Achieving ultra-short discharge time and high energy density in lead-based antiferroelectric ceramics by A-site substitution[J]. Chem Eng J, 2022, 447: 137367.
[19] [19] HAN Kai. Energy storage characteristics and mechanism of AgNbO3-based lead-free antiferroelectric ceramics[D]. Nanning: Guangxi University, 2020.
[20] [20] HAO X H, ZHAI J W, KONG L B, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J]. Prog Mater Sci, 2014, 63: 1-57.
[22] [22] CHEN L, LI F, GAO B T, et al. Excellent energy storage and mechanical performance in hetero-structure BaTiO3-based relaxors[J]. Chem Eng J, 2023, 452: 139222.
[23] [23] LUO N N, HAN K, ZHUO F P, et al. Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics[J]. J Mater Chem C, 2019, 7(17): 4999-5008.
[24] [24] LIU X H, YANG T Q, GONG W P. Achieving ultrahigh energy-storage capability in PbZrO3-based antiferroelectric capacitors based on optimization of property parameters[J]. J Mater Chem A, 2022, 10(8): 4137-4145.
[25] [25] XU Y H, YANG Z D, XU K, et al. Enhanced energy-storage performance in silver niobate-based dielectric ceramics sintered at low temperature[J]. J Alloys Compd, 2022, 913: 165313.
[26] [26] ZHANG Tianfu. Oxygen vacancies related dielectric relaxation, ferroelectric energy-storage and electrocaloric effects in lead based ferroelectric materials[D]. Guangzhou: Guangdong University of Technology, 2018.
[27] [27] LIU G, LI Y, GUO B, et al. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free Barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering[J]. Chem Eng J, 2020, 398: 125625.
[28] [28] JIANG J, MENG X J, LI L, et al. Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering[J]. Energy Storage Mater, 2021, 43: 383-390.
[29] [29] CHEN H Y, DONG X Y, WANG X, et al. Energy storage properties in Bi(Mg1/2Sb2/3)O3-doped NaNbO3 lead-free ceramics[J]. Ceram Int, 2022, 48(6): 7723-7729.
[30] [30] CHU B J, ZHOU X, REN K L, et al. A dielectric polymer with high electric energy density and fast discharge speed[J]. Science, 2006, 313(5785): 334-336.
Get Citation
Copy Citation Text
XU Lizhi, CHEN Liming, ZHAO Qiran, YANG Huilin, DING Jianxiang. Enhanced Energy Storage Properties in Tm-Doped Antiferroelectric Ceramics by Engineering Grain Boundaries[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1267
Category:
Received: Sep. 27, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: Liming CHEN (lmchen@ahut.edu.cn)