Acta Optica Sinica, Volume. 44, Issue 1, 0106014(2024)

Research Progress of Brillouin Optical Time-Domain Analyzers Based on Optical Pulse Coding

Simeng Jin, Zhisheng Yang*, Xiaobin Hong, and Jian Wu
Author Affiliations
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    References(106)

    [1] Hartog A H[M]. An introduction to distributed optical fibre sensors(2017).

    [2] Motil A, Bergman A, Tur M. State of the art of Brillouin fiber-optic distributed sensing[J]. Optics & Laser Technology, 78, 81-103(2016).

    [3] Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers[J]. Optics Letters, 15, 1038-1040(1990).

    [4] Minardo A, Damiano E, Olivares L et al. Soil slope monitoring by use of a Brillouin distributed sensor[C], 4(2015).

    [5] Oskoui E A, Taylor T, Ansari F. Method and monitoring approach for distributed detection of damage in multi-span continuous bridges[J]. Engineering Structures, 189, 385-395(2019).

    [6] Jiang S, Li X F, Zhang J N. Life-cycle health monitoring in civil architecture based on BOTDA[J]. Architecture & Culture, 175-176(2019).

    [7] He Z W, Zhao X M, Ye Y X et al. Experimental study on double crack monitoring of concrete pipe based on BOTDA[J]. China Concrete and Cement Products, 43-46(2020).

    [8] Gutiérrez F, Sevil J, Sevillano P et al. The application of distributed optical fiber sensors (BOTDA) to sinkhole monitoring. Review and the case of a damaging sinkhole in the Ebro Valley evaporite Karst (NE Spain)[J]. Engineering Geology, 325, 107289(2023).

    [10] Soto M A, Thévenaz L. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors[J]. Optics Express, 21, 31347-31366(2013).

    [11] Foaleng S M, Thévenaz L. Impact of Raman scattering and modulation instability on the performances of Brillouin sensors[J]. Proceedings of SPIE, 7753, 77539V(2011).

    [12] Alem M, Soto M A, Thévenaz L. Analytical model and experimental verification of the critical power for modulation instability in optical fibers[J]. Optics Express, 23, 29514-29532(2015).

    [13] Dominguez-Lopez A, Angulo-Vinuesa X, Lopez-Gil A et al. Non-local effects in dual-probe-sideband Brillouin optical time domain analysis[J]. Optics Express, 23, 10341-10352(2015).

    [14] Dominguez-Lopez A, Yang Z S, Soto M A et al. Novel scanning method for distortion-free BOTDA measurements[J]. Optics Express, 24, 10188-10204(2016).

    [15] Ruiz-Lombera R, Urricelqui J, Sagues M et al. Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors[J]. IEEE Photonics Journal, 7, 6803609(2015).

    [16] Rodriguez-Barrios F, Martin-Lopez S, Carrasco-Sanz A et al. Distributed Brillouin fiber sensor assisted by first-order Raman amplification[J]. Journal of Lightwave Technology, 28, 2162-2172(2010).

    [17] Jia X H, Rao Y J, Yuan C X et al. Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping[J]. Optics Express, 21, 24611-24619(2013).

    [18] Gyger F, Rochat E, Chin S et al. Extending the sensing range of Brillouin optical time-domain analysis up to 325 km combining four optical repeaters[J]. Proceedings of SPIE, 9157, 91576Q(2014).

    [19] Urricelqui J, Sagues M, Loayssa A. Brillouin optical time domain analysis sensor assisted by Brillouin distributed amplification of pump pulses[J]. Optics Express, 23, 30448-30458.

    [20] Soto M A, Ricchiuti A L, Zhang L et al. Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers[J]. Optics Express, 22, 28584-28595(2014).

    [21] Chen D, Liu Q W, Fan X Y et al. Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio[J]. Journal of Lightwave Technology, 35, 2037-2043(2017).

    [22] Yang Z S, Soto M A, Chow D M et al. Brillouin distributed optical fiber sensor based on a closed-loop configuration[J]. Journal of Lightwave Technology, 36, 1239-1248(2017).

    [23] Zhou D W, Dong Y K, Wang B Z et al. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement[J]. Light: Science & Applications, 7, 32(2018).

    [24] Williams E F, Fernández-Ruiz M R, Magalhaes R et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 10, 5778(2019).

    [25] Zhang Q, Wang T, Zhao J R et al. Denoising algorithm for Brillouin optical time-domain analysis sensing systems based on local mean decomposition[J]. Acta Optica Sinica, 41, 1306009(2021).

    [26] Golay M J E. Sieves for low autocorrelation binary sequences[J]. IEEE Trans. Information Theory, 23, 43-51(1977).

    [27] Everard J K A. Novel signal processing techniques for enhanced OTDR sensors[J]. Proceedings of SPIE, 0798, 42-47(1987).

    [28] Nazarathy M, Newton S A, Giffard R P et al. Real-time long range complementary correlation optical time domain reflectometer[J]. Journal of Lightwave Technology, 7, 24-38(1989).

    [29] Jones M D. Using simplex codes to improve OTDR sensitivity[J]. IEEE Photonics Technology Letters, 5, 822-824(1993).

    [30] Lee D, Yoon H, Kim N Y et al. Analysis and experimental demonstration of simplex coding technique for SNR enhancement of OTDR[C], 118-122(2004).

    [31] Soto M A, Sahu P K, Faralli S et al. Distributed temperature sensor system based on Raman scattering using correlation-codes[J]. Electronics Letters, 43, 862-864(2007).

    [32] Soto M A, Sahu P K, Bolognini G et al. Brillouin-based distributed temperature sensor employing pulse coding[J]. IEEE Sensors Journal, 8, 225-226(2008).

    [33] Soto M A, Bolognini G, Di Pasquale F. Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors[J]. Optics Express, 16, 19097-19111(2008).

    [34] Soto M A, Bolognini G, Di Pasquale F. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding[J]. IEEE Photonics Technology Letters, 21, 450-452(2009).

    [35] Linze N, Li W H, Bao X Y. Signal-to-noise ratio improvement in Brillouin sensing[J]. Proceedings of SPIE, 7503, 923-926(2009).

    [36] Soto M A, Bolognini G, Di Pasquale F et al. Distributed strain and temperature sensing over 50 km of SMF with 1 m spatial resolution employing BOTDA and optical pulse coding[J]. Proceedings of SPIE, 7503, 750383(2009).

    [37] Soto M A, Bolognini G, Di Pasquale F et al. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range[J]. Optics Letters, 35, 259-261(2010).

    [38] Liang H, Li W H, Linze N et al. High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses[J]. Optics Letters, 35, 1503-1505(2010).

    [39] Soto M A, Bolognini G, Di Pasquale F et al. Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques[J]. Measurement Science and Technology, 21, 094024(2010).

    [40] Soto M A, Bolognini G, Di Pasquale F. Long-range simplex-coded BOTDA sensor over 120km distance employing optical preamplification[J]. Optics Letters, 36, 232-234(2011).

    [41] Wang F, Zhu C H, Cao C Q et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Optics Express, 25, 3504-3513(2017).

    [42] Le Floch S, Sauser F. New improvements for Brillouin optical time-domain reflectometry[J]. Proceedings of SPIE, 10323, 103230L(2017).

    [43] Jia X H, Rao Y J, Deng K et al. Experimental demonstration on 2.5-m spatial resolution and 1 ℃ temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding[J]. IEEE Photonics Technology Letters, 23, 435-437(2011).

    [44] Soto M A, Taki M, Bolognini G et al. Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification[J]. IEEE Photonics Technology Letters, 24, 1823-1826(2012).

    [45] Angulo-Vinuesa X, Soto M A, Martin-Lopez S et al. Brillouin optical time-domain analysis over a 240 km-long fiber loop with no repeater[J]. Proceedings of SPIE, 8421, 8421C9(2012).

    [46] Soto M A, Angulo-Vinuesa X, Martin-Lopez S et al. Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers[J]. Journal of Lightwave Technology, 32, 152-162(2014).

    [47] Qian X Y, Wang Z N, Wang S et al. 157 km BOTDA with pulse coding and image processing[J]. Proceedings of SPIE, 9916, 99162S(2016).

    [48] Taki M, Muanenda Y, Oton C J et al. Cyclic pulse coding for fast BOTDA fiber sensors[J]. Optics Letters, 38, 2877-2880(2013).

    [49] Lu P, Lalam N, Liu B et al. Vector Brillouin optical time-domain analysis with Raman amplification and optical pulse coding[[J]. Proceedings of SPIE, 10925, 1092512(2019).

    [50] Fu Y, Zhu R C, Han B et al. 175-km repeaterless BOTDA with hybrid high-order random fiber laser amplification[J]. Journal of Lightwave Technology, 37, 4680-4686(2019).

    [51] Bin Zan M S D, Sasaki T, Horiguchi T et al. Phase shift pulse Brillouin optical time domain analysis (PSP-BOTDA) employing dual Golay codes[C](2010).

    [52] Bin Zan M S D, Horiguchi T. A dual Golay complementary pair of sequences for improving the performance of phase-shift pulse BOTDA fiber sensor[J]. Journal of Lightwave Technology, 30, 3338-3356(2012).

    [53] Mao Y, Guo N, Yu K L et al. 1-cm-spatial-resolution Brillouin optical time-domain analysis based on bright pulse Brillouin gain and complementary code[J]. IEEE Photonics Journal, 4, 2243-2248(2012).

    [54] Sun Q, Tu X B, Lu Y et al. High-accuracy and long-range Brillouin optical time-domain analysis sensor based on the combination of pulse prepump technique and complementary coding[J]. Optical Engineering, 55, 066125(2016).

    [55] Zhou Y, Yan L S, Li Z L et al. Polarization division multiplexing pulse coding for eliminating the effect of polarization pulling in Golay-coded BOTDA fiber sensor[J]. Optics Express, 26, 19686-19693(2018).

    [56] Li Z L, Yang Z S, Yan L S et al. Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses[J]. Optics Letters, 43, 4574-4577(2018).

    [57] Zhou Y, Yan L S, Li Z L et al. Polarization push-pull effect-based gain fluctuation elimination in Golay-BOTDA[J]. Optics Express, 27, 29439-29447(2019).

    [58] Liu C, Yan L S, Li Z L et al. Overcoming EDFA slow transient effects in a combined Golay coding and coherent detection BOTDA sensor[J]. Optics Express, 27, 38220-38228(2019).

    [59] Zan M D, Elgaud M M, Zainuddin A R et al. Simulation analysis on the simultaneous deployment of Brillouin gain and loss in coded Brillouin optical time domain analysis (BOTDA) fiber sensor[J]. Journal of Physics: Conference Series, 1892, 012034(2021).

    [60] Liu S S, Zhang X C, Zhang Y T et al. Numerical investigation of Golay coding Brillouin optical time-domain analysis system based on π-phase pulse[J]. IEEE Sensors Journal, 22, 2190-2197(2022).

    [61] Wei W L, Shen L, Zhao Z Y et al. BOTDA sensing system based on differential Golay coding and deconvolution algorithm[J]. Journal of Lightwave Technology, 41, 5475-5484(2023).

    [62] Soto M A, Taki M, Bolognini G et al. Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification[J]. Optics Express, 20, 6860-6869(2012).

    [63] Taki M, Soto M A, Bolognini G et al. Study of Raman amplification in DPP-BOTDA sensing employing Simplex coding for sub-meter scale spatial resolution over long fiber distances[J]. Measurement Science and Technology, 24, 094018(2013).

    [64] Sun Q, Tu X B, Sun S L et al. Long-range BOTDA sensor over 50 km distance employing pre-pumped Simplex coding[J]. Journal of Optics, 18, 055501(2016).

    [65] Qian X Y, Jia X H, Wang Z N et al. Noise level estimation of BOTDA for optimal non-local means denoising[J]. Applied Optics, 56, 4727-4734(2017).

    [66] Taki M, Signorini A, Oton C J et al. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding[J]. Optics Letters, 38, 4162-4165(2013).

    [67] Muanenda Y S, Taki M, Nannipieri T et al. Advanced coding techniques for long-range Raman/BOTDA distributed strain and temperature measurements[J]. Journal of Lightwave Technology, 34, 342-350(2016).

    [68] Iribas H, Loayssa A, Sauser F et al. Cyclic coding for Brillouin optical time-domain analyzers using probe dithering[J]. Optics Express, 25, 8787-8800(2017).

    [69] Xu S R, Ma H L, Jia X H et al. Long-distance vector Brillouin optical time-domain analysis sensors using distributed Brillouin amplification with frequency-comb pump parallel demodulation[J]. Applied Physics Express, 13, 112004(2020).

    [70] Sun X Z, Yang Z S, Hong X B et al. Genetic-optimised aperiodic code for distributed optical fibre sensors[J]. Nature Communications, 11, 5774(2020).

    [71] Zhou Y, Yan L S, Liu C et al. Hybrid aperiodic coding for SNR improvement in a BOTDA fiber sensor[J]. Optics Express, 29, 33926-33936(2021).

    [72] Le Floch S, Sauser F, Soto M A et al. Time/frequency coding for Brillouin distributed sensors[J]. Proceedings of SPIE, 8421, 84211J(2012).

    [73] Le Floch S, Sauser F, Llera M et al. Colour simplex coding for Brillouin distributed sensors[J]. Proceedings of SPIE, 8794, 879437(2013).

    [74] Le Floch S, Sauser F, Llera M et al. Novel Brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses[J]. Journal of Lightwave Technology, 33, 2623-2627(2015).

    [75] Le Floch S, Sauser F, Llera M et al. Colour cyclic code for Brillouin distributed sensors[J]. Proceedings of SPIE, 9634, 963431(2015).

    [76] Le Floch S, Llera M, Gloriod O et al. Unique coded sequence for fast Brillouin distributed sensors[C], WF20(2018).

    [77] Soto M A, Le Floch S, Thévenaz L. Bipolar optical pulse coding for performance enhancement in BOTDA sensors[J]. Optics Express, 21, 16390-16397(2013).

    [78] Yang Z S, Soto M A, Thévenaz L. Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors[J]. Optics Express, 24, 586-597(2015).

    [79] Bin Zan M S D, Tsumuraya T, Horiguchi T. The use of Walsh code in modulating the pump light of high spatial resolution phase-shift-pulse Brillouin optical time domain analysis with non-return-to-zero pulses[J]. Measurement Science and Technology, 24, 094025(2013).

    [80] Zan M S D B, Yokoyama K, Horiguchi T. Combination of Walsh and Golay codes in modulating the pump light of phase-shift pulse BOTDA sensor[C], 160-162(2013).

    [81] Zan M S D, Bakar A A A, Horiguchi T. Improvement of signal-to-noise-ratio by combining Walsh and Golay codes in modulating the pump light of phase-shift pulse BOTDA fiber sensor[C], 269-273(2016).

    [82] Soto M A. Distributed Brillouin sensing: time-domain techniques[M]. Peng G D. Handbook of optical fibers, 1663-1753(2019).

    [83] Baronti F, Lazzeri A, Roncella R et al. SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes[J]. Electronics Letters, 46, 1221(2010).

    [84] Golay M. Complementary series[J]. IRE Transactions on Information Theory, 7, 82-87(1961).

    [85] Sivanandam S N, Deepa S N. Genetic algorithms[M]. Sivanandam S N, Deepa S. Introduction to genetic algorithms, 15-37(2008).

    [86] Wang S, Yang Z S, Soto M A et al. Study on the signal-to-noise ratio of Brillouin optical-time domain analyzers[J]. Optics Express, 28, 19864-19876(2020).

    [87] Yang Z S, Li Z L, Zaslawski S et al. Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers[J]. Optics Express, 26, 16505-16523(2018).

    [88] Gao X, Yang Z S, Wang S et al. Impact of optical noises on unipolar-coded Brillouin optical time-domain analyzers[J]. Optics Express, 29, 22146-22158(2021).

    [89] Thévenaz L, Mafang S F, Lin J. Effect of pulse depletion in a Brillouin optical time-domain analysis system[J]. Optics Express, 21, 14017-14035(2013).

    [90] Urricelqui J, Soto M A, Thévenaz L. Sources of noise in Brillouin optical time-domain analyzers[J]. Proceedings of SPIE, 9634, 963434(2015).

    [91] Barton D K. Radars. Volume 3-pulse compression[M](1975).

    [92] Soto Marcelo A, Gabriele B, Fabrizio D P. Analysis of pulse modulation format in coded BOTDA sensors[J]. Optics Express, 18, 14878-14892(2010).

    [93] Chang H Q, Jia X H, Ji X L et al. DBA-based BOTDA using optical comb pump and pulse coding with a single laser[J]. IEEE Photonics Technology Letters, 28, 1142-1145(2016).

    [94] Bolognini G, Park J, Soto M A et al. Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification[J]. Measurement Science & Technology, 18, 3211-3218(2007).

    [95] Rosolem J B, Bassan F R, de Freitas D E et al. Raman DTS based on OTDR improved by using gain-controlled EDFA and pre-shaped simplex code[J]. IEEE Sensors Journal, 17, 3346-3353(2017).

    [96] van Deventer M O, Boot A J. Polarization properties of stimulated Brillouin scattering in single-mode fibers[J]. Journal of Lightwave Technology, 12, 585-590(1994).

    [97] Zadok A, Zilka E, Eyal A et al. Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers[J]. Optics Express, 16, 21692-21707(2008).

    [98] Soto M A, Tur M, Lopez-Gil A et al. Polarisation pulling in Brillouin optical time-domain analysers[J]. Proceedings of SPIE, 10323, 103239L(2017).

    [99] Yuan L B, Tong W J, Jiang S et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 42, 0100001(2022).

    [100] Li W H, Bao X Y, Li Y et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 16, 21616-21625(2008).

    [101] Luo Y, Yan L S, Shao L Y et al. Golay-differential pulse hybrid coding technology based on Brillouin optical time domain analysis sensors[J]. Acta Optica Sinica, 36, 0806002(2016).

    [102] Liu Q, Huang J, Liang H et al. Coded DPP-BOTDA sensor based on Brillouin gain-loss effect[J]. Laser & Optoelectronics Progress, 60, 0928005(2023).

    [103] Kishida K, Li C H, Nishiguchi K. Pulse pre-pump method for cm-order spatial resolution of BOTDA[J]. Proceedings of SPIE, 5855, 559-562(2005).

    [104] Soto M A, Bolognini G, Di Pasquale F. Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification[J]. Optics Express, 19, 4444-4457(2011).

    [105] Dominguez-Lopez A, Lopez-Gil A, Martín-López S et al. Strong cancellation of RIN transfer in a Raman-assisted BOTDA using balanced detection[J]. IEEE Photonics Technology Letters, 26, 1817-1820(2014).

    [106] Angulo-Vinuesa X, Dominguez-Lopez A, Lopez-Gil A et al. Limits of BOTDA range extension techniques[J]. IEEE Sensors Journal, 16, 3387-3395(2016).

    Tools

    Get Citation

    Copy Citation Text

    Simeng Jin, Zhisheng Yang, Xiaobin Hong, Jian Wu. Research Progress of Brillouin Optical Time-Domain Analyzers Based on Optical Pulse Coding[J]. Acta Optica Sinica, 2024, 44(1): 0106014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Aug. 15, 2023

    Accepted: Oct. 21, 2023

    Published Online: Jan. 11, 2024

    The Author Email: Yang Zhisheng (zhisheng.yang@bupt.edu.cn)

    DOI:10.3788/AOS231420

    Topics