Optics and Precision Engineering, Volume. 31, Issue 24, 3570(2023)
Wind-induced vibration piezoelectric energy harvester with a deformable airfoil-shape blunt body
[1] S SHARMA, R KIRAN, P AZAD et al. A review of piezoelectric energy harvesting tiles: available designs and future perspective. Energy Conversion and Management, 254, 115272(2022).
[2] A MUSCAT, S BHATTACHARYA, Y ZHU. Electromagnetic vibrational energy harvesters: a review. Sensors, 22, 5555(2022).
[3] H LIU, H FU, L SUN et al. Hybrid energy harvesting technology: from materials, structural design, system integration to applications. Renewable and Sustainable Energy Reviews, 137, 110473(2021).
[4] C G ZHANG, Y B LIU, B F ZHANG et al. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Letters, 1490-1499(2021).
[5] [5] 阚君武, 富佳伟, 王淑云, 等. 涡激振动式微型流体俘能器的研究现状与展望[J]. 光学 精密工程, 2017, 25(6): 1502-1512. doi: 10.3788/ope.20172506.1502KANJ W, FUJ W, WANGS Y, et al. Research status and prospect of vortex-induced vibration micro-fluid energy harvester[J]. Opt. Precision Eng., 2017, 25(6): 1502-1512.(in Chinese). doi: 10.3788/ope.20172506.1502
[6] L ZHANG, F ZHANG, Z QIN et al. Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring. Energy, 238, 121770(2022).
[7] [7] 王朝辉, 贾小东, 王帅, 等. 基于应用环境的路用压电俘能单元尺寸优化与性能评价[J]. 中国公路学报, 2022, 35(7): 100-112. doi: 10.3969/j.issn.1001-7372.2022.07.008WANGC H, JIAX D, WANGS, et al. Size optimization and performance evaluation of road piezoelectric energy harvesting unit based on application environment[J]. China Journal of Highway and Transport, 2022, 35(7): 100-112.(in Chinese). doi: 10.3969/j.issn.1001-7372.2022.07.008
[8] Y CHEN, Z C YANG, S X ZHOU. Wide bandwidth wind-induced vibration energy harvester with an angle section head. International Journal of Applied Mechanics, 14, 2250021(2022).
[9] Z ZHANG, J CHAI, Y WU et al. A rotational energy harvester utilizing an asymmetrically deformed piezoelectric transducer subjected only to unidirectional compressive stress. Energy Reports, 9, 657-668(2023).
[10] [10] 阚君武, 王凯, 孟凡许, 等. 换向激励式压电振动俘能器[J]. 光学 精密工程, 2023, 31(3): 371-379. doi: 10.37188/OPE.20233103.0371KANJ W, WANGK, MENGF X, et al. Piezoelectric vibration harvester with excitation direction conversion[J]. Opt. Precision Eng., 2023, 31(3): 371-379.(in Chinese). doi: 10.37188/OPE.20233103.0371
[11] [11] 王水田. 卡门漩涡引起的海洋建筑物的振动及其防止(上)[J]. 水道港口, 1983(4): 47-54.WANGS T. Vibration of marine structures caused by the Karman vortex and its prevention (Part 1)[J]. Journal of Waterway and Harbor, 1983(4): 47-54. (in Chinese)
[12] [12] 王淑云, 严梦加, 阚君武, 等. 间接激励式压电风力俘能器[J]. 光学 精密工程, 2019, 27(5): 1121-1127. doi: 10.3788/ope.20192705.1121WANGS Y, YANM J, KANJ W, et al. Study of piezoelectric wind energy harvester with indirect excitation[J]. Opt. Precision Eng., 2019, 27(5): 1121-1127.(in Chinese). doi: 10.3788/ope.20192705.1121
[13] J J LIU, Y J CHEN, W XIA et al. An innovative V-shaped piezoelectric energy harvester for wind energy based on the fully fluid-solid-electric coupling. Journal of Renewable and Sustainable Energy, 13(2021).
[14] [14] 侯成伟, 单小彪, 宋汝君, 等. 风向自适应型涡激振动压电俘能器的试验研究[J]. 机械工程学报, 2022, 58(20): 120-127. doi: 10.3901/jme.2022.20.120HOUC W, SHANX B, SONGR J, et al. Experimental study of orientation adaptive piezoelectric energy harvester based on vortex induced vibration[J]. Journal of Mechanical Engineering, 2022, 58(20): 120-127.(in Chinese). doi: 10.3901/jme.2022.20.120
[15] G HU, J WANG, L TANG. A comb-like beam based piezoelectric system for galloping energy harvesting. Mechanical Systems and Signal Processing, 150, 107301(2021).
[16] W LIAO, Y WEN, J KAN et al. A joint-nested structure piezoelectric energy harvester for high-performance wind-induced vibration energy harvesting. International Journal of Mechanical Sciences, 227, 107443(2022).
[17] J KAN, J WANG, F MENG et al. A downwind-vibrating piezoelectric energy harvester under the disturbance of a downstream baffle. Energy, 262, 125429(2023).
[18] J WANG, S GU, C ZHANG et al. Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Conversion and Management, 213, 112835(2020).
[19] J WANG, S SUN, L TANG et al. On the use of metasurface for Vortex-Induced vibration suppression or energy harvesting. Energy Conversion and Management, 235, 113991(2021).
[20] Z ZHOU, W QIN, P ZHU et al. Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings. Energy, 153, 400-412(2018).
[21] W SUN, J SEOK. A novel self-tuning wind energy harvester with a slidable bluff body using vortex-induced vibration. Energy Conversion and Management, 205, 112472(2020).
[22] X F ZHANG, X J LIN, C H YANG et al. Effects of radial stress on piezoelectric ceramic tubes and transducers. The Journal of the Acoustical Society of America, 151, 434-442(2022).
[23] F R LIU, H X ZOU, W M ZHANG et al. Y-type three-blade bluff body for wind energy harvesting. Applied Physics Letters, 112, 233903(2018).
[24] [24] 杜小振, P.A.MBANGO-NGOMA, 常恒,等. 流致涡激振动压电发电风能采集技术模拟研究[J]. 振动与冲击, 2022, 41(23): 168-174.DUX Z, P. A. M N, CHANGH, et al. Wind energy collection technology simulation with flow-induced VIV piezoelectric film for power generation[J]. Journal of Vibration and Shock, 2022, 41(23): 168-174. (in Chinese)
[25] W L LIAO, Z J HUANG, H SUN et al. Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting. Energy, 281, 128264(2023).
Get Citation
Copy Citation Text
Zhonghua ZHANG, Zhe LI, Fanxu MENG, Shuyun WANG, He LI, Junwu KAN. Wind-induced vibration piezoelectric energy harvester with a deformable airfoil-shape blunt body[J]. Optics and Precision Engineering, 2023, 31(24): 3570
Category:
Received: Jun. 22, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: KAN Junwu (jutkjw@163. com)