Acta Optica Sinica, Volume. 41, Issue 15, 1531002(2021)

Ultraviolet Absorption of Graphene Enhanced by Asymmetric Resonant Cavity

Guoping Luo*, Xingyuan Chen, Sumei Hu, and Weiling Zhu
Author Affiliations
  • School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
  • show less
    References(36)

    [1] Shang H M, Dai M J, Gao F et al. Progress in inorganic ultraviolet photoelectric materials[J]. Materials China, 38, 875-886(2019).

    [2] Chen J X, Ouyang W, Yang W et al. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications[J]. Advanced Functional Materials, 30, 1909909(2020).

    [4] Zhao J L, Deng R, Qin J M et al. Photoresponse enhancement in SnO2-based ultraviolet photodetectors via coupling with surface plasmons of Ag particles[J]. Journal of Alloys and Compounds, 748, 398-403(2018).

    [5] Xu X, Chen J, Cai S et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector[J]. Advanced Materials, 30, e1803165(2018).

    [6] Lee C J, Won C H, Lee J H et al. Selectively enhanced UV-A photoresponsivity of a GaN MSM UV photodetector with a step-graded AlxGa1-xN buffer layer[J]. Sensors, 17, 1684(2017).

    [7] Zhang D, Zheng W, Lin R C et al. High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed[J]. Journal of Alloys and Compounds, 735, 150-154(2018).

    [8] Chen X P, Zhu H L, Cai J F et al. High-performance 4H-SiC-based ultraviolet p-i-n photodetector[J]. Journal of Applied Physics, 102, 024505(2007).

    [9] Chen H, Liu H, Zhang Z et al. Nanostructured photodetectors: from ultraviolet to terahertz[J]. Advanced Materials, 28, 403-433(2016).

    [10] Chen H Y, Liu K W, Hu L F et al. New concept ultraviolet photodetectors[J]. Materials Today, 18, 493-502(2015).

    [11] Xie C, Lu X T, Tong X W et al. Ultrawide-bandgap semiconductors: recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors[J]. Advanced Functional Materials, 29, 1970057(2019).

    [12] Stankovich S, Dikin D A. Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 442, 282-286(2006).

    [13] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [14] Zhang C L, Xin Z Q, Min C J et al. Refractive index sensing imaging technology based on optical surface wave[J]. Acta Optica Sinica, 39, 0126009(2019).

    [15] Yuan Z H, Xu Y, Cao B et al. Broadband transmission infrared light modulator based on graphene plasma[J]. Laser & Optoelectronics Progress, 57, 232301(2020).

    [17] Kong W Y, Wu G A, Wang K Y et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 28, 10725-10731(2016).

    [18] Gong M G, Liu Q F, Cook B et al. All-printable ZnO quantum dots/graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light[J]. ACS Nano, 11, 4114-4123(2017).

    [19] Wang J L, Fang H H, Wang X D et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared[J]. Small, 13, 1700894(2017).

    [20] Long M S, Wang P, Fang H H et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 29, 1803807(2019).

    [22] Li Z W, Lu H, Li Y W et al. Near-infrared light absorption enhancement in graphene induced by the Tamm state in optical thin films[J]. Acta Optica Sinica, 39, 0131001(2019).

    [23] Li Q, Lu J, Gupta P et al. Engineering optical absorption in graphene and other 2D materials: advances and applications[J]. Advanced Optical Materials, 7, 1900595(2019).

    [24] Cai Y J, Wang Z Y, Yan S et al. Ultraviolet absorption band engineering of graphene by integrated plasmonic structures[J]. Optical Materials Express, 8, 3295-3306(2018).

    [25] Zhou K, Lu L, Song J L et al. Ultra-narrow-band and highly efficient near-infrared absorption of a graphene-based Tamm plasmon polaritons structure. [C]∥The International Photonics and Optoelectronics Meeting (POEM), October 31-November 3, 2018, Wuhan, China. Washington, D.C.: OSA, OT4A, 8(2018).

    [27] Fang J R. Wang D, de Vault C, et al. Enhanced graphene photodetector with fractal metasurface. [C]∥CLEO: QELS_Fundamental Science 2016, June 5-10, 2016, San Jose, California, United States. Washington, D.C.: OSA, FF1B, 4(2016).

    [28] Xu Y L, Li H X, Zhou C B et al. The ultraviolet absorption of graphene in the Tamm state[J]. Optik, 219, 165015(2020).

    [29] Guo Y B, Wang S Q, Zhou Y G et al. Broadband absorption enhancement of graphene in the ultraviolet range based on metal-dielectric-metal configuration[J]. Journal of Applied Physics, 126, 213103(2019).

    [30] Weber J W. Calado V E, van de Sanden M C M. Optical constants of graphene measured by spectroscopic ellipsometry[J]. Applied Physics Letters, 97, 091904(2010).

    [31] McPeak K M, Jayanti S V, Kress S J P et al. Plasmonic films can easily be better: rules and recipes[J]. ACS Photonics, 2, 326-333(2015).

    [32] Zhan T R, Shi X, Dai Y Y et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics: Condensed Matter, 25, 215301(2013).

    [33] Liang Z J, Liu H X, Niu Y X et al. Design and performance analysis of microcavity-enhanced graphene photodetector[J]. Acta Physica Sinica, 65, 138501(2016).

    [34] Kaliteevski M, Iorsh I, Brand S et al. Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror[J]. Physical Review B, 76, 165415(2007).

    [35] Zhu J F, Yan S, Feng N X et al. Near unity ultraviolet absorption in graphene without patterning[J]. Applied Physics Letters, 112, 153106(2018).

    [36] Song B K, Gu H G, Fang M S et al. Layer-dependent dielectric function of wafer-scale 2D MoS2[J]. Advanced Optical Materials, 7, 1801250(2019).

    Tools

    Get Citation

    Copy Citation Text

    Guoping Luo, Xingyuan Chen, Sumei Hu, Weiling Zhu. Ultraviolet Absorption of Graphene Enhanced by Asymmetric Resonant Cavity[J]. Acta Optica Sinica, 2021, 41(15): 1531002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Thin Films

    Received: Dec. 7, 2020

    Accepted: Mar. 9, 2021

    Published Online: Aug. 11, 2021

    The Author Email: Luo Guoping (guopingluo@126.com)

    DOI:10.3788/AOS202141.1531002

    Topics