Acta Optica Sinica, Volume. 41, Issue 15, 1522001(2021)

Analysis and Design of Grism Linear-Wavenumber Spectroscopic Optical System

Jian Bao1,2, Qiuyang Shen1,2, Xinhua Chen1,2、*, Shiqi Pan1,2, and Weimin Shen1,2
Author Affiliations
  • 1Key Laboratory of Modern Optical Technologies of Education of China, School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • 2Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province, School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • show less
    References(27)

    [1] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995).

    [3] Usler G H, Lindner M W. “Coherence radar” and “spectral radar” : new tools for dermatological diagnosis[J]. Journal of Biomedical Optics, 3, 21-31(1998).

    [5] Wang R K, Zhang A, Choi W J et al. Wide-field optical coherence tomography angiography enabled by two repeated measurements of B-scans[J]. Optics Letters, 41, 2330-2333(2016).

    [6] Si P J, Wang L, Xu M E. Tumor cell invasion imaging based on optical coherence tomography[J]. Chinese Journal of Lasers, 46, 0907003(2019).

    [7] Shen R Q, Wang L, Xu M E et al. Characterization of cell distribution based on optical coherence tomography scattering[J]. Chinese Journal of Lasers, 47, 0207039(2020).

    [8] Han T, Qiu J R, Wang D et al. Optical coherence microscopy and its application[J]. Chinese Journal of Lasers, 47, 0207004(2020).

    [9] Liu Y, Yang Y L, Yue X. Optical coherence tomography angiography and its applications in ophthalmology[J]. Laser & Optoelectronics Progress, 57, 180002(2020).

    [10] Yaqoob Z, Wu J G, Yang C. Spectral domain optical coherence tomography: a better OCT imaging strategy[J]. BioTechniques, 39, S6-S13(2005).

    [11] Hu Z, Rollins A M. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer[J]. Optics Letters, 32, 3525-3527(2007).

    [12] Watanabe Y, Itagaki T. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit[J]. Journal of Biomedical Optics, 14, 060506(2009).

    [13] Lee S W, Kang H, Park J H et al. Ultrahigh-resolution spectral domain optical coherence tomography based on a linear-wavenumber spectrometer[J]. Journal of the Optical Society of Korea, 19, 55-62(2015).

    [14] Lan G, Li G. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography[J]. Scientific Reports, 7, 42353(2017).

    [15] Wu T, Sun S S, Wang X H et al. Optimized linear wavenumber spectrometer based spectral-domain optical coherence tomography system[J]. Acta Physica Sinica, 67, 104208(2018).

    [16] Ruiz-Lopera S, Restrepo R. Design of a linear in wavenumber spectrometer. [C]∥Latin America Optics and Photonics Conference 2018, November 12-15, 2018, Lima, Peru. Washington, D.C.: OSA, W2B, 3(2018).

    [17] Wu T, Cao K M, Wang X H et al. Single input state, single mode fiber based spectral domain polarization sensitive optical coherence tomography using a single linear-in-wavenumber spectral camera[J]. Optics and Lasers in Engineering, 127, 105948(2020).

    [18] Liu M L. Fast imaging on spectral domain optical coherence tomography[D]. Tianjin: Nankai University, 36-39(2015).

    [20] Yoon C, Bauer A, Xu D et al. Absolute linear-in-k spectrometer designs enabled by freeform optics[J]. Optics Express, 27, 34593-34602(2019).

    [21] Traub W A. Constant-dispersion grism spectrometer for channeled spectra[J]. Journal of the Optical Society of America A, 7, 1779-1791(1990).

    [22] Fujimoto J G, Pitris C, Boppart S A et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy[J]. Neoplasia, 2, 9-25(2000).

    [23] Sainter A, King T A, Dickinson M R. Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography[J]. Journal of Biomedical Optics, 9, 193-199(2004).

    [24] Lee S W, Jeong H W, Ahn Y C et al. Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm[J]. Journal of the Korean Physical Society, 55, 2354-2360(2009).

    [25] Zhang Y M, Zhang H X, Jia D G[M]. Applied optics, 184-186,364(2015).

    [26] Xue M Q[M]. Instrumental optics, 86-87(2020).

    [27] Mouroulis P, Green R O, Chrien T G. Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information[J]. Applied Optics, 39, 2210-2220(2000).

    Tools

    Get Citation

    Copy Citation Text

    Jian Bao, Qiuyang Shen, Xinhua Chen, Shiqi Pan, Weimin Shen. Analysis and Design of Grism Linear-Wavenumber Spectroscopic Optical System[J]. Acta Optica Sinica, 2021, 41(15): 1522001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Jan. 29, 2021

    Accepted: Mar. 8, 2021

    Published Online: Aug. 11, 2021

    The Author Email: Chen Xinhua (xinhua_chen@suda.edu.cn)

    DOI:10.3788/AOS202141.1522001

    Topics