Acta Physica Sinica, Volume. 68, Issue 17, 177101-1(2019)

Heavy fermion materials and physics

Wu Xie1,2, Bin Shen1,2, Yong-Jun Zhang1,2, Chun-Yu Guo1,2, Jia-Cheng Xu1,2, Xin Lu1,2, and Hui-Qiu Yuan1,2、*
Author Affiliations
  • 1Center for Correlated Matter, Zhejiang University, Hangzhou 310058, China
  • 2Department of Physics, Zhejiang University, Hangzhou 310027, China
  • show less
    Figures & Tables(13)
    Intermetallic compounds with lanthanides or actinides form the majority of heavy fermion materials.重费米子材料大多是含有镧系或锕系元素的金属间化合物
    (a) A schematic illustration of the crystal structure of CeCu2Si2; (b) and (c) evidences for superconductivity in CeCu2Si2 from resistivity and heat capacity, respectively[3]; (d) temperature-pressure phase diagram of CeCu2Si2 and CeCu2(Si1–xGex)2, suggesting two separate superconducting domes[8].(a) CeCu2Si2结构示意图; (b), (c)超导电性在电阻和比热上的体现[3]; (d) 压力诱导的双超导相[8]
    (a) Schematic illustrations of crystalline structures in CenMmIn3n+2m(M = Co, Rh, Ir; n, m are integers) (M = Rh for example); (b) a schematic pressure-temperature phase diagram of CeIn3 and CeRhIn5[24].(a) CenMmIn3n+2m(M = Co, Rh, Ir; n, m为整数)体系的晶体结构 (以M = Rh为例); (b) CeIn3和CeRhIn5的压力-温度相图示意图[24]
    (a) Magnetic field (B)-temperature (T) phase diagram of YbRh2Si2 and YbRh2(Si0.95Ge0.05)2[43]; (b) B-T phase diagram of YbRh2Si2 at lower temperature, suggesting a superconducting region[47].(a) YbRh2Si2和YbRh2(Si0.95Ge0.05)2的B-T相图[43]; (b) 极低温下的YbRh2Si2的B-T相图[47]
    (a), (b) Schematic illustrations of the crystalline structure of UBe13 and UPt3, respectively; (c) superconducting phase diagram of UBe13 as a function of Th-doping[53]; (d) magnetic field–temperature superconducting phase diagram of UPt3[58].(a) UBe13结构示意图; (b) UPt3结构示意图; (c) Th掺杂的UBe13相图[53]; (d) UPt3的超导相图[58]
    Temperature dependence of the magnetic penetration depth Δλ[10] (a) and specific heat Ce/T[11](b) of CeCu2Si2, both showing a fully gapped behavior at the lowest temperature.重费米子超导体CeCu2Si2的(a)磁场穿透深度Δλ[10]和(b)低温比热系数Ce/T[11], 两者在低温都呈指数衰减
    Heavy fermion superconductors and quantum phase diagrams: (a) CePd2Si2, superconductivity (SC) near an antiferromagnetic quantum critical point(QCP)[19]; (b) UCoGe, SC near a ferromagnetic QCP[87]; (c) PrTi2Al20, SC coexists with multipolar order and gets enhanced near its QCP[89]; (d) β-YbAlB4, SC far away from an antiferromagnetic QCP[90].重费米子超导体超导相和量子相变 (a) CePd2Si2, 超导出现在反铁磁量子临界点附近[19]; (b) UCoGe, 超导出现在铁磁量子相变附近[87]; (c) PrTi2Al20, 超导与多极矩序[89]; (d) β-YbAlB4, 超导远离反铁磁量子临界点[90]
    Schematic phase diagrams for itinerant quantum critical point (QCP) (a) and local QCP (b), respectively, proposed in one theoretical model. The x-axis denotes nonthermal tuning parameters δ, y-axis is the temperature T. TN is the antiferromagnetic ordering temperature, denotes the volume change of Fermi surface and T0 is the temperature regime where kondo lattice forms[99].巡游量子临界点(a)和局域量子临界点(b)的理论相图 图中的横坐标是非热力的调控参量δ, 纵坐标表示温度T, 调控参量δ可以调节RKKY作用和Kondo作用的相对强度; 图(a)显示量子临界点伴随近藤效应的塌陷, 导致费米面在此发生跳变; 而在图(b)中, 近藤效应发生在反铁磁态内部, 费米面在量子临界点连续变化; TN代表反铁磁转变温度, TFL表示费米液体的温度上限, 标记小费米面到大费米面的转变, T0代表近藤晶格形成的过渡区间[99]
    Experimental phase diagram of CeRhIn5 tuned by pressure[100] (a) and magnetic field[35] (b); (c) the proposed zero-temperature pressure-field global phase diagram[35].CeRhIn5在(a)压力[100]和(b) 磁场调制下的相图[35]; (c) 可能的零温压力-磁场相图[35]
    (a) Temperature dependence of resistivity for a possible topological Kondo insulator SmB6, where a clear plateau is observed at low temperature[116]; (b) band inversion and surface Dirac cone of SmB6, from band-structure calculation[128].(a) 拓扑近藤绝缘体SmB6的电阻随温度变化测量结果[116], 在低温, 电阻的上升趋势逐渐饱和, 形成一个平台; (b) 能带计算表明, SmB6的能带结构中存在能带反转, 从而导致了表面狄拉克锥的出现[128]
    Topological properties of the low temperature heavy fermion state in YbPtBi[133]: (a) T3-behavior of the low temperature specific heat Cp/T in different fields; (b) topological Hall effect at low temperatures.YbPtBi在低温重费米子态的拓扑性质[133] (a) 电子比热Cp正比于温度T的三次方; (b) 拓扑霍尔效应
    (a) Pressure-temperature phase diagram of URu2Si2[146]; (b) magnetic field- temperature phase diagram of CePdAl[150]; (c) Q-phase of CeCoIn5, by neutron scattering measurements[151].(a) URu2Si2材料在压力下的相图[146], 隐藏序相逐渐被抑制, 转变为反铁磁序, 同时超导相消失; (b) CePdAl材料的磁场-温度相图[150], 在某一磁场区间内, 比热测量结果表明其熵出现极大增加; (c) CeCoIn5中子散射结果表明其超导上临界磁场附近存在一个特殊的Q相[151]
    • Table 1.

      A summary of heavy fermion superconductors (Tc is superconducting transition temperature, γ is specific heat coefficient, Hc2(0) is the upper critical field).

      重费米子超导材料(超导转变温度Tc, 比热系数γ, 上临界场Hc2(0))

      View table
      View in Article

      Table 1.

      A summary of heavy fermion superconductors (Tc is superconducting transition temperature, γ is specific heat coefficient, Hc2(0) is the upper critical field).

      重费米子超导材料(超导转变温度Tc, 比热系数γ, 上临界场Hc2(0))

      类型化合物Tc/K γ/mJ·mol–1·K–2Hc2 (0)/T
      CeT2X2CeCu2Si20.6410000.45//a
      CeCu2Ge20.64 (10 GPa)2//a
      CePd2Si20.5 (2.7 GPa)650.7//a   1.3//c
      CeAu2Si22.5 (22.5 GPa)
      CeNi2Ge20.3350
      CeRh2Si20.35 (0.9 GPa)23
      CeTX3CeRhSi31.05 (2.6 GPa)1107
      CeIrSi31.59 (2.6 GPa)12030
      CeNiGe30.48 (6.8 GPa)342
      CeCoGe30.7 (5.5 GPa)3222
      CeIrGe31.6 (24 GPa)8017
      CemTnIn3m+2nCeIn30.25 (2.5 GPa)3700.45
      CeCoIn52.330011.6—11.9//a   4.95//c
      CeRhIn51.9 (1.77 GPa)5010.2//c
      CeIrIn50.47000.53
      CePt2In72.3 (3.1 GPa)34015
      Ce2CoIn80.4460
      Ce2RhIn82.0 (2.3 GPa)4005.36
      Ce2PdIn80.68550
      Ce3PdIn110.422902.8
      其他铈基CePt3Si 0.753905
      CePd5Al20.57 (10.8 GPa)560.25
      镨基PrOs4Sb121.855002.3
      PrTi2Al200.21000.006
      PrV2Al200.05900.014
      镱基YbRh2Si20.002
      β-YbAlB40.081300.03
      铀基UIr0.14 (2.6 GPa)48.50.026
      UGe20.7 (1.2 GPa)1001.4
      UBe130.910009
      UPt30.55, 0.484222.8//a
      UCoGe0.66555//a
      URhGe0.251602//a
      UNi2Al31.01201.6
      UPd2Al32.01500.8
      URu2Si21.565.510
      镎基NpPd5Al25.02003.7//a
      钚基PuCoGa518.07774
      PuCoIn52.520032//a, 10//c
      PuRhGa5980-15025//ab
      PuRhIn51.735023//ab
    Tools

    Get Citation

    Copy Citation Text

    Wu Xie, Bin Shen, Yong-Jun Zhang, Chun-Yu Guo, Jia-Cheng Xu, Xin Lu, Hui-Qiu Yuan. Heavy fermion materials and physics[J]. Acta Physica Sinica, 2019, 68(17): 177101-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 24, 2019

    Accepted: --

    Published Online: Sep. 16, 2020

    The Author Email:

    DOI:10.7498/aps.68.20190801

    Topics