Semiconductor Optoelectronics, Volume. 41, Issue 3, 306(2020)

Recent Progresses of Silicon-based High-speed Detectors with Micro-/Nanostructures

WANG Haoxuan, GUO Anran*, JIN Hui, and HUANG Feilin
Author Affiliations
  • [in Chinese]
  • show less
    References(50)

    [1] [1] Unlu M S, Emsley M K, Dosunmu O I, et al. High-speed Si resonant cavity enhanced photodetectors and arrays[J]. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, 2004, 22(3): 781.

    [2] [2] Ackert J J, Karar A S, Cartledge J C, et al. Monolithic silicon waveguide photodiode utilizing surface-state absorption and operating at 10Gb/s[J]. Opt. Express, 2014, 22(9): 10710.

    [3] [3] Geis M W, et al. CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band[J]. IEEE Photonics Technol. Lett., 2007, 19(3): 152-154.

    [4] [4] Lin H, et al. Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping[J]. J. Mater. Chem. A, 2013, 1(34): 9942-9946.

    [5] [5] Gao Y, et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes[J]. Nat. Photonics, 2017, 11(5): 301-308.

    [6] [6] Genzel L, Martin T P. Infrared absorption by surface photons and surface plasmons in small crstal[J]. Surf. Sci, 1973, 34: 33-39.

    [7] [7] Ravipati S, Shieh J, Ko F-H, et al. Ultralow reflection from a-Si nanograss/Si nanofrustum double layers[J]. Adv. Mater., 2013, 25(12): 1724-1728.

    [8] [8] Xi J Q, et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection[J]. Nat. Photonics, 2007, 1(3): 176-179.

    [9] [9] Spinelli P, Verschuuren M A, Polman A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators[J]. Nat. Commun., 2012, 3: 692-695.

    [10] [10] Yablonovitch E, Cody G D. Intensity enhancement in textured optical sheets for solar cells[J]. IEEE Trans. Electron Devices, 1982, 29(2): 300-305.

    [11] [11] Han S E, Chen G. Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells[J]. Nano Lett., 2010, 10(11): 4692-4696.

    [12] [12] Kuang P, Eyderman S, Hsieh M-L, et al. Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture[J]. ACS Nano, 2016, 10(6): 6116-6124.

    [13] [13] Jeong S, McGehee M D, Cui Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency[J]. Nat. Commun., 2013, 4: 1-7.

    [14] [14] Branham M S, et al. 15.7% efficient 10μm-thick crystalline silicon solar cells using periodic nanostructures[J]. Adv. Mater., 2015, 27(13): 2182-2188.

    [15] [15] Fan S, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Phys. Rev. B-Condens. Matter Mater. Phys., 2002, 65(23): 1-8.

    [16] [16] Donnelly J L, et al. Mode-based analysis of silicon nanohole arrays for photovoltaic applications[J]. Opt. Express, 2014, 22(S5): A1343.

    [17] [17] Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells[J]. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(41): 17491-17496.

    [18] [18] Sturmberg B C P, et al. Modal analysis of enhanced absorption in silicon nanowire arrays[J]. Opt. Express, 2011, 19(S5): A1067.

    [19] [19] Sakoda K. Enhanced light amplification due to group-velocity anomaly in two-dimensional photonic crystals[J]. IQEC, Int. Quantum Electron. Conf. Proc., 1999, 4(5): 255.

    [20] [20] Zhang X, Yu Y, Xi J, et al. Absorption enhancement in double-sided nanocone hole arrays for solar cells[J]. J. Opt. (United Kingdom), 2015, 17(7): 75901.

    [21] [21] Eyderman S, John S, Deinega A. Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping[J]. J. Appl. Phys., 2013, 113: 15.

    [22] [22] Gao Y, et al. High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900~1000nm wavelength[J]. ACS Photonics, 2017, 4(8): 2053-2060.

    [23] [23] Lehmann V. The physics of macropore formation in low-doped p-type silicon[J]. J. Electrochem. Soc., 1999, 146(8): 2968.

    [24] [24] Ma L, et al. Wide-band“black silicon” based on porous silicon[J]. Appl. Phys. Lett., 2006, 88: 171907.

    [25] [25] Lv H, Shen H, Jiang Y, et al. Porous-pyramids structured silicon surface with low reflectance over a broad band by electrochemical etching[J]. Appl. Surf. Sci., 2012, 258(14): 5451-5454.

    [26] [26] Guo A, Zhong H, Li W, et al. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate[J]. Appl. Surf. Sci., 2016, 384: 487-491.

    [27] [27] Peng K Q, et al. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles[J]. Adv. Funct. Mater., 2005, 16: 387-394.

    [28] [28] Yu K J, et al. Light trapping in ultrathin monocrystalline silicon solar cells[J]. Adv. Energy Mater., 2013, 3(11): 1401-1406.

    [29] [29] Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272(5258): 85-87.

    [30] [30] Austin M, et al. Fabrication of 5nm linewidth and 14nm pitch features by nanoimprint lithography[J]. Appl. Phys. Lett., 2004, 84: 5299-5301.

    [31] [31] Trompoukis C, Daif El O, Depauw V, et al. Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography[J]. Appl. Phys. Lett., 2012, 101(10): 103117.

    [32] [32] Jansen H V, Boer De M J, Unnikrishnan S, et al. Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: An in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment[J]. J. Micromechanics Microengineering, 2009, 19(3): 33001.

    [33] [33] Sun G, Gao T, Zhao X, et al. Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching[J]. J. Micromechanics Microengineering, 2010, 20: 75028.

    [34] [34] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Appl. Phys. Lett., 1998, 73(12): 1673-1675.

    [35] [35] Younkin R, Carey J E, Mazur E, et al. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J]. J. Appl. Phys., 2003, 93(5): 2626-2629.

    [36] [36] Sheehy M, Tull B, Friend C, et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation[J]. Mater. Sci. Eng. B, 2007, 137: 289-294.

    [37] [37] Li C H, Zhao J H, Chen Q D, et al. Infrared absorption of femtosecond laser textured silicon under vacuum[J]. IEEE Photonics Technol. Lett., 2015, 27(14): 1481-1484.

    [38] [38] Swoboda R, Zimmermann H. 11Gb/s monolithically integrated silicon optical receiver for 850nm wavelength[C]// IEEE Inter. Solid-State Circuits Conf., 2006: 1696131.

    [39] [39] Youn J, Lee M, Park K, et al. An integrated 125-Gb/s optoelectronic receiver with a silicon avalanche photodetectorin standard SiGe BiCMOS technology[J]. Opt. Express, 2012, 20(27): 28153.

    [40] [40] Lee M J, Youn J S, Park K Y, et al. A fully-integrated 125-Gb/s 850nm CMOS optical receiver based on a spatially-modulated avalanche photodetector[J]. Opt. Express, 2014, 22(3): 2511.

    [41] [41] Youn J S, Lee M J, Park K Y, et al. 10Gb/s 850nm CMOS OEIC receiver with a silicon avalanche photodetector[J]. IEEE J. Quantum Electron., 2012, 48(2): 229-236.

    [42] [42] Fuchs E R H, Kirchain R E, Liu S. The future of silicon photonics: Not so fast? insights from 100G ethernet LAN transceivers[J]. J. Light. Technol., 2011, 29(15): 2319-2326.

    [43] [43] Tanaka Y, et al. Photonic crystal microcrystalline silicon solar cells[J]. Prog. Photovoltaics Res. Appl., 2015, 23(11): 1475-1483.

    [44] [44] Zang K, et al. Silicon single-photon avalanche diodes with nano-structured light trapping[J]. Nat. Commun., 2017, 8(1): 628.

    [45] [45] Aull B F, Schuette D R, Young D J, et al. A study of crosstalk in a 256×256 photon counting imager based on silicon Geiger-mode avalanche photodiodes[J]. IEEE Sens. J., 2015, 15(4): 2123-2132.

    [46] [46] Balaji N, Hussain S Q, Park C, et al. Surface passivation schemes for high-efficiency c-Si solar cells-A review[J]. Trans. Electr. Electron. Mater., 2015, 16(5): 227-233.

    [47] [47] Mayet A S, et al. Inhibiting device degradation induced by surface damages during top-down fabrication of semiconductor devices with micro/nano-scale pillars and holes[J]. Low-Dimensional Mater. Devices, 2016, 9924: 99240C.

    [48] [48] Green M, et al. Solar cell efficiency tables (version 40)[J]. IEEE Trans Fuzzy Syst, 2012, 20(6): 1114-1129.

    [49] [49] Schmidt J, Merkle A, Hoex B, et al. Atomic-layer-deposited aluminum oxide for the surface passivation of high-efficiency silicon solar cells[C]// IEEE Photovolt. Spec. Conf., 2008: 2-6.

    [50] [50] Kumaravelu G, Alkaisi M M, Bittar A, et al. Damage studies in dry etched textured silicon surfaces[J]. Curr. Appl. Phys., 2004, 4(2/4): 108-110.

    Tools

    Get Citation

    Copy Citation Text

    WANG Haoxuan, GUO Anran, JIN Hui, HUANG Feilin. Recent Progresses of Silicon-based High-speed Detectors with Micro-/Nanostructures[J]. Semiconductor Optoelectronics, 2020, 41(3): 306

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 11, 2020

    Accepted: --

    Published Online: Jun. 18, 2020

    The Author Email: Anran GUO (jackiwong05@163.com)

    DOI:10.16818/j.issn1001-5868.2020.03.002

    Topics