Semiconductor Optoelectronics, Volume. 44, Issue 1, 153(2023)

Research on Detection Algorithm of Mine Personnel Protection Equipment Based on S3-YOLOv5s

DAI Shaosheng*... ZENG Qi, HUANG Lian, CHEN Changchuan, CHEN Yiyu and LU Zhengxin |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(23)

    [1] [1] Nath N D, Behzadan A H, Paal S G. Deep learning for site safety: Real-time detection of personal protective equipment[J]. Automation in Construction, 2020, 112: 103085.

    [2] [2] Wang Z, Wu Y, Yang L, et al. Fast personal protective equipment detection for real construction sites using deep learning approaches[J]. Sensors, 2021, 21(10): 3478.

    [3] [3] Li T, Chen Q, Gan J, et al. Investigating into deep neural networks for applicable hard-hat wearing detection in substations[J]. J. of Physics: Conf. Series, 2021, 2002(1): 012062.

    [4] [4] Fu Chuan, Wang Rongxin. Research on safety helmet wearing YOLO-V3 detection technology improvement in mine environment[J]. J. of Physics: Conf. Series, 2019, 1345(4): 042045.

    [5] [5] Wang X, Niu D, Luo P, et al. A safety helmet and protective clothing detection method based on improved-Yolo V3[C]// 2020 Chinese Automation Congress (CAC), 2020: 5437-5441.

    [6] [6] Redmon J, Farhadi A. Yolov3: An incremental improvement[DB/OL]. (2018-4-8). http://arXiv.org/pdf/1804.02767.

    [7] [7] Zhuo N, Yun G. Research on application of target detection network based on SSD in underground coal mine[C]// 2021 5th Inter. Conf. on Computer Science and Artificial Intelligence, 2021: 21-26.

    [8] [8] Li X, Wang S, Liu B, et al. Improved YOLOv4 network using infrared images for personnel detection in coal mines[J]. J. of Electronic Imaging, 2022, 31(1): 013017.

    [9] [9] Yang L, Zhang R Y, Li L, et al. Simam: A simple, parameter-free attention module for convolutional neural networks[C]// Inter. Conf. on Machine Learning, 2021: 11863-11874.

    [10] [10] Wang X, Zhang S, Yu Z, et al. Scale-equalizing pyramid convolution for object detection[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2020: 13359-13368.

    [11] [11] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression[DB/OL]. 2022-5-25. http:// arXiv.org/ftp/arXiv/papers/2205/2205.12740.

    [12] [12] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.

    [14] [14] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 7132-7141.

    [15] [15] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]// Proc. of the European Conf. on Computer Vision (ECCV), 2018: 3-19.

    [16] [16] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2020: 11531-11539.

    [17] [17] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2021: 13713-13722.

    [18] [18] Lin T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection[C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2017: 2117-2125.

    [19] [19] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 8759-8768.

    [20] [20] Liu S, Huang D, Wang Y. Learning spatial fusion for single-shot object detection[DB/OL]. 2019-10-21. http://arXiv.org/pdf/1911.09516.

    [21] [21] Ghiasi G, Lin T Y, Le Q V. Nas-fpn: Learning scalable feature pyramid architecture for object detection[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2019: 7036-7045.

    [22] [22] Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2020: 10781-10790.

    [23] [23] Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks[C]//Proc. of the IEEE Inter. Conf. on Computer Vision, 2017: 764-773.

    [24] [24] Zheng Z, Wang P, Ren D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Trans. on Cybernetics, 2021, 52(8): 8574-8586.

    Tools

    Get Citation

    Copy Citation Text

    DAI Shaosheng, ZENG Qi, HUANG Lian, CHEN Changchuan, CHEN Yiyu, LU Zhengxin. Research on Detection Algorithm of Mine Personnel Protection Equipment Based on S3-YOLOv5s[J]. Semiconductor Optoelectronics, 2023, 44(1): 153

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 7, 2022

    Accepted: --

    Published Online: Apr. 7, 2023

    The Author Email: Shaosheng DAI (daiss@cqupt.edu.cn)

    DOI:10.16818/j.issn1001-5868.2022110701

    Topics