Journal of the Chinese Ceramic Society, Volume. 52, Issue 2, 454(2024)

Research Progress on Electron Transfer Mechanism of S-Scheme Photocatalyst

SUN Jian, BIE Chuanbiao, ZHANG Jianjun, ZHANG Liuyang*, and YU Jiaguo
Author Affiliations
  • [in Chinese]
  • show less
    References(45)

    [1] [1] XIA Y, YU J G. Reaction: Rational design of highly active photocatalysts for CO2 conversion[J]. Chemistry, 2020, 6(5): 1039-1040.

    [2] [2] XIA Y, ZHANG L Y, HU B W, et al. Design of highly-active photocatalytic materials for solar fuel production[J]. Chem Eng J, 2021, 421: 127732.

    [3] [3] XIA Y, SAYED M, ZHANG L Y, et al. Single-atom heterogeneous photocatalysts[J]. Chem Catal, 2021, 1(6): 1173-1214.

    [4] [4] LI X, YU J G, JARONIEC M. Hierarchical photocatalysts[J]. Chem Soc Rev, 2016, 45(9): 2603-2636.

    [5] [5] DAI Kai, ZHANG Haibo, ZHANG Jinfeng, et al. J Chin Ceram soc, 2023, 51(1): 23-31.

    [6] [6] ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S-scheme photocatalyst[J]. Adv Mater, 2022, 34(11): 2107668.

    [7] [7] TANG Hua, LIU Yue, WANG Lele, et al. J Chin Ceram Soc, 2023, 51(1): 14-22.

    [8] [8] JIANG Zicong, ZHANG Liuyang, YU Jiaguo. J Chin Ceram Soc, 2023, 51(1): 73-81.

    [9] [9] YU Jiaguo, ZHANG Liuyang. J Chin Ceram Soc, 2023, 51(1): 1-3.

    [10] [10] ZHANG K Y, LI Y F, YUAN S D, et al. Review of S-scheme heterojunction photocatalyst for H2O2 production[J]. Acta Phys Chim Sin, 2023, 39(6): 2212010.

    [11] [11] LUO C, LONG Q, CHENG B, et al. A DFT study on S-scheme heterojunction consisting of Pt single atom loaded G-C3N4 and BiOCl for photocatalytic CO2 reduction[J]. Acta Phys Chim Sin, 2023, 39(6): 2212026.

    [12] [12] WU X H, CHEN G Q, WANG J, et al. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution[J]. Acta Phys Chim Sin, 2023, 39(6): 2212016.

    [13] [13] HE F, ZHU B C, CHENG B, et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity[J]. Appl Catal B Environ, 2020, 272: 119006.

    [14] [14] MENG A Y, CHENG B, TAN H Y, et al. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity[J]. Appl Catal B Environ, 2021, 289: 120039.

    [15] [15] LI L L, MA D K, XU Q L, et al. Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance[J]. Chem Eng J, 2022, 437: 135153.

    [16] [16] WANG Z L, CHEN Y F, ZHANG L Y, et al. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity[J]. J Mater Sci Technol, 2020, 56: 143-150.

    [17] [17] ZHANG J J, YANG G Y, HE B W, et al. Electron transfer kinetics in CdS/Pt heterojunction photocatalyst during water splitting[J]. Chin J Catal, 2022, 43(10): 2530-2538.

    [18] [18] XI Y M, CHEN W B, DONG W R, et al. Engineering an interfacial facet of S-scheme heterojunction for improved photocatalytic hydrogen evolution by modulating the internal electric field[J]. ACS Appl Mater Interfaces, 2021, 13(33): 39491-39500.

    [19] [19] LIU C, MAO S, WANG H L, et al. Peroxymonosulfate-assisted for facilitating photocatalytic degradation performance of 2D/2D WO3/BiOBr S-scheme heterojunction[J]. Chem Eng J, 2022, 430: 132806.

    [20] [20] LIN W C, LO W C, LI J X, et al. In situ XPS investigation of the X-ray-triggered decomposition of perovskites in ultrahigh vacuum condition[J]. Npj Mater Degrad, 2021, 5: 13.

    [21] [21] ZHANG P, LI Y K, ZHANG Y S, et al. Front cover: Photogenerated electron transfer process in heterojunctions: In situ irradiation XPS[J]. Small Methods, 2020, 4(9): 2070034.

    [22] [22] WANG L B, CHENG B, ZHANG L Y, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small, 2021, 17(41): 2103447.

    [23] [23] XIA P F, CAO S W, ZHU B C, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angew Chem Int Ed, 2020, 59(13): 5218-5225.

    [24] [24] ZHANG J J, ZHU B C, ZHANG L Y, et al. Femtosecond transient absorption spectroscopy investigation into the electron transfer mechanism in photocatalysis[J]. Chem Commun, 2023, 59(6): 688-699.

    [25] [25] CHENG C, ZHANG J J, ZHU B C, et al. Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy[J]. Angew Chem Int Ed, 2023, 62(8): e202218688.

    [26] [26] LI J F, LI Z Y, LIU X M, et al. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing[J]. Nat Commun, 2021, 12(1): 1224.

    [27] [27] ZHAO X X, LI J Z, SONG X H, et al. Au nanoparticles-modified S-scheme In2O3/H1.5CN heterojunction with enhanced photocatalytic CO2 reduction activity[J]. Appl Surf Sci, 2022, 601: 154246.

    [28] [28] ZHANG X D, YU J G, MACYK W, et al. C3N4/PDA S-scheme heterojunction with enhanced photocatalytic H2O2 production performance and its mechanism[J]. Adv Sustain Syst, 2023, 7(1): 2200113.

    [29] [29] ZHU B C, CHENG B, ZHANG L Y, et al. Review on DFT calculation of s-triazine-based carbon nitride[J]. Carbon Energy, 2019, 1(1): 32-56.

    [30] [30] ZHU B C, TAN H Y, FAN J J, et al. Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping[J]. J Materiomics, 2021, 7(5): 988-997.

    [31] [31] PHAM C V, REPP S, THOMANN R, et al. Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials[J]. Nanoscale, 2016, 8(18): 9682-9687.

    [32] [32] WU S S, YU X, ZHANG J L, et al. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal[J]. Chem Eng J, 2021, 411: 128555.

    [33] [33] QIN K N, ZHAO Q L, YU H, et al. A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms[J]. Environ Res, 2021, 199: 111360.

    [34] [34] BARRETO J C, SMITH G S, STROBEL N H P, et al. Terephthalic acid: A dosimeter for the detection of hydroxyl radicals in vitro[J]. Life Sci, 1994, 56(4): 89-96.

    [35] [35] WANG J, WANG G H, CHENG B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo red photodegradation[J]. Chin J Catal, 2021, 42(1): 56-68.

    [36] [36] ZHOU Y, YI Q Y, XING M Y, et al. Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces[J]. Chem Commun, 2016, 52(8): 1689-1692.

    [37] [37] ZHU J, FAN F T, CHEN R T, et al. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst[J]. Angew Chem Int Ed, 2015, 54(31): 9111-9114.

    [38] [38] TANAKA A, HASHIMOTO K, KOMINAMI H. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation[J]. J Am Chem Soc, 2014, 136(2): 586-589.

    [39] [39] YU H G, LIU W J, WANG X F, et al. Promoting the interfacial H2-evolution reaction of metallic Ag by Ag2S cocatalyst: A case study of TiO2/Ag-Ag2S photocatalyst[J]. Appl Catal B Environ, 2018, 225: 415-423.

    [40] [40] ZHANG J J, BAI T Y, HUANG H, et al. Metal-organic-framework- based photocatalysts optimized by spatially separated cocatalysts for overall water splitting[J]. Adv Mater, 2020, 32(49): 2004747.

    [41] [41] LI B W, LI Q Y, GUPTA B, et al. Boosting visible-light-driven catalytic hydrogen evolution via surface Ti3+ and bulk oxygen vacancies in urchin-like hollow black TiO2 decorated with RuO2 and Pt dual cocatalysts[J]. Catal Sci Technol, 2020, 10(23): 7914-7921.

    [42] [42] ZHANG J K, YU Z B, GAO Z, et al. Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production[J]. Angew Chem Int Ed, 2017, 56(3): 816-820.

    [43] [43] LUANGWANTA T, CHACHVALVUTIKUL A, KAOWPHONG S. Facile synthesis and enhanced photocatalytic activity of a novel FeVO4/Bi4O5Br2 heterojunction photocatalyst through step-scheme charge transfer mechanism[J]. Colloids Surf A Physicochem Eng Aspects, 2021, 627: 127217.

    [44] [44] WANG J P, YU Y, CUI J Y, et al. Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction[J]. Appl Catal B Environ, 2022, 301: 120814.

    [45] [45] HE F, MENG A Y, CHENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chin J Catal, 2020, 41(1): 9-20.

    Tools

    Get Citation

    Copy Citation Text

    SUN Jian, BIE Chuanbiao, ZHANG Jianjun, ZHANG Liuyang, YU Jiaguo. Research Progress on Electron Transfer Mechanism of S-Scheme Photocatalyst[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 454

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jun. 28, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Liuyang ZHANG (zhangliuyang@cug.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics