High Power Laser and Particle Beams, Volume. 32, Issue 12, 121001(2020)

High-power narrow-linewidth fiber laser technology

Wenchang Lai... Pengfei Ma, Hu Xiao, Wei Liu, Can Li, Man Jiang, Jiangming Xu, Rongtao Su, Jinyong Leng, Yanxing Ma and Pu Zhou* |Show fewer author(s)
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    References(198)

    [4] [4] Snitzer E, Po H, Hakimi F, et al. Doubleclad offset ce Nd fiber laser[C]Optical Fiber Sens Conference. 1989, PD5: 533536.

    [9] [9] Shiner B. The impact of fiber laser technology on the wld wide material processing market[C]Conference on Lasers ElectroOptics. 2013: AF2J.

    [10] [10] IPG Photonics. IPG set to ship 100 kW laser[DBOL]. http:optics.gnews31044.

    [25] [25] Qi Y, Yang Y, Shen H, et al. 2.7 kW CW narrow linewidth Ybdoped allfiber amplifiers f beam combining application[C]Advanced SolidState Lasers. 2017: ATu3A.1.

    [27] [27] Platonov N, Yagodkin R, De La Cruz J, et al. Up to 2.5 kW on nonPM fiber 2.0 kW linear polarized on PM fiber narrow linewidth CW diffractionlimited fiber amplifiers in allfiber fmat[C]Proc of SPIE. 2018: 105120E.

    [39] [39] Geng J, Wu J, Jiang S. Efficient singlefrequency thulium doped fiber laser near 2µm[C]Advanced SolidState Lasers. 2007: WE4.

    [57] [57] Kaneda Y, Spiegelberg C, Geng J, et al. 200mW, narrowlinewidth 1064.2nm Ybdoped fiber laser[C]Conference on Lasers ElectroOptics. 2004, CThO3, 12.

    [71] [71] Zhu C, Hu I, Ma X, et al. Singlefrequency singletransverse mode Ybdoped CCC fiber MOPA with robust polarization SBSfree 511W output[C]. OSAASSP, 2011, AMC5, 13.

    [72] [72] Robin C, Dajani I, Chiragh F. Experimental studies of segmented acoustically tailed photonic crystal fiber amplifier with 494 W singlefrequency output[C]Proc of SPIE. 2011, 79140B.

    [74] [74] Mermelstein M D, Brar K, rejco M J, et al. Allfiber 194 W singlefrequency singlemode Ybdoped masteroscillat poweramplifier[C]Proc of SPIE. 2008: 68730L.

    [84] [84] Creeden D, Pretius H, Limongelli J, et al. Single frequency 1560 nm Er: Yb fiber amplifier with 207W output power 50.5% slope efficiency[C]Proc of SPIE. 2015: 97282L.

    [113] [113] Shi W, Fang Q, Fan J, et al. High power monolithic linearly polarized narrow linewidth single mode fiber laser at 1064 nm[C]Conference on Lasers ElectroOptics Pacific Rim. 2015.

    [119] [119] Qi Y, Ming Lei, Liu C, et al. 1.75 kW CW narrow linewidth Ybdoped allfiberamplifiers f beam combining application[C]Conference on Lasers ElectroOptics. 2015: ATu4M.

    [121] [121] Engin D, Lu W, Akbulut M, et al. 1 kW cw Ybfiberamplifier with

    [123] Su R, Tao R, Wang X. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Phys Lett, 14, 085102(2017).

    [124] Li T, Zha C, Sun Y. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser[J]. Laser Phys, 28, 105101(2018).

    [130] [130] Dajani I, Fles A, Holten R, et al. Multikilowatt power scaling coherent beam combining of narrowlinewidth fiber lasers[C]Proc of SPIE. 2015: 972801.

    [134] [134] Kanskar M, Zhang J, Koponen J, et al. Narrowb transversemodalinstability (TMI)free Ybdoped fiber amplifiers f directed energy applications[C]Proc SPIE. 2018: 15120F.

    [135] [135] Lim W Y W, Seah K W, Seah C P, et al. Wavelength flexible, kWlevel narrow linewidth fibre laser based on 7GHz PRBS phase modulation[C]Proc of SPIE. 2020: 1126006.

    [138] [138] Chu Q, Shi Y, Wen J, et al. 2.5 kW narrow linewidth fiber amplifier with white noise signal phase modulated seed[C]Conference on Lasers ElectroOptics. 2018: W1A.

    [146] Harish A V, Nilsson J. Optimization of phase modulation formats for suppression of stimulated brillouin scattering in optical fibers[J]. IEEE J Sel Top Quant, 24, 1-10(2018).

    [149] [149] Stihler C, Jauregui C, Otto H, et al. Controlling mode instabilities at 628 W average output power in an Ybdoped rodtype fiber amplifier by active modulation of the pump power[C]Proc of SPIE. 2017: 100830P.

    [151] [151] Smith J J, Smith A V. Influence of signal bwidth on mode instability thresholds of fiber amplifiers[C]Proc of SPIE. 2015: 93440L.

    [152] Tao R, Ma P, Wang X. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE J Quantum Elect, 51, 1600106(2015).

    [153] [153] Otto H, Modsching N, Jauregui C, et al. Wavelength dependence of maximal diffractionlimited output power of fiber lasers[C]Proc of SPIE. 2015: 93441Y.

    [154] [154] Sanjabi Eznaveh Z, LópezGalmiche G, AntonioLópez E, et al. Bidirectional pump configuration f increasing thermal modal instabilities threshold in high power fiber amplifiers[C]Proc of SPIE. 2015: 93442G.

    [155] [155] Naderi S, Dajani I, Grosek J, et al. Theetical analysis of effect of pump signal wavelengths on modal instabilities in Ybdoped fiber amplifiers[C]Proc of SPIE. 2014: 89641W.

    [169] Chen M, Meng Z, Wang J. Strong linewidth reduction by compact Brillouin/erbium fiber laser[J]. IEEE Photonics J, 6, 1-8(2014).

    [170] Chen M, Meng Z, Zhang Y. Ultranarrow-linewidth Brillouin/erbium fiber laser based on 45-cm erbium-doped fiber[J]. IEEE Photonics J, 7, 1-6(2015).

    [180] [180] Zhu T, Huang S, Shi L, et al. Ultranarrow linewidth fiber laser with selfinjection feedback based on Rayleigh backscattering[C]Conference on Lasers ElectroOptics. 2014: SW1N5.

    [191] Shukla M K, Das R. High-power single-frequency source in the mid-infrared using a singly resonant optical parametric oscillator pumped by Yb-fiber laser[J]. IEEE J Sel Top Quant, 24, 1-6(2018).

    [196] [196] Shekel E, Vidne Y, Urbach B. 16 kW single mode CW laser with dynamic beam f material processing[C]Proc of SPIE. 2020: 1126021.

    [197] [197] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 60 femtosecond fiber amplfiers[C]Proc of SPIE. 2020: 112600L.

    [200] [200] Honea E, Afzal R S, SavageLeuchs M, et al. Advances in fiber laser spectral beam combining f power scaling[C]Proc of SPIE. 2016: 97300Y.

    CLP Journals

    [1] Yuefang Yan, Rumao Tao, Yu Liu, Yuwei Li, Haoyu Zhang, Qiuhui Chu, Min Li, Qiang Shu, Xi Feng, Wenhui Huang, Feng Jing. Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices[J]. High Power Laser and Particle Beams, 2023, 35(4): 041005

    [2] Hongxiang Chang, Rongtao Su, Jinhu Long, Qi Chang, Pengfei Ma, Yanxing Ma, Pu Zhou. Research progress of active phase-locking technique of an all-fiber coherent laser array[J]. High Power Laser and Particle Beams, 2023, 35(4): 041004

    [3] Weiyi Yuan, Min Fu, Zhixian Li, Zefeng Wang, Zilun Chen. Integrated fiber cladding power stripper and end-cap with 20 kW output power[J]. High Power Laser and Particle Beams, 2022, 34(11): 111001

    [4] Jinhu Long, Rongtao Su, Hongxiang Chang, Tianyue Hou, Qi Chang, Min Jiang, Jiayi Zhang, Yanxing Ma, Pengfei Ma, Pu Zhou. Coherent combining of fiber laser based on internal phase locking in spatial structure[J]. High Power Laser and Particle Beams, 2023, 35(4): 041008

    Tools

    Get Citation

    Copy Citation Text

    Wenchang Lai, Pengfei Ma, Hu Xiao, Wei Liu, Can Li, Man Jiang, Jiangming Xu, Rongtao Su, Jinyong Leng, Yanxing Ma, Pu Zhou. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32(12): 121001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Laser

    Received: Jul. 2, 2020

    Accepted: --

    Published Online: Jan. 6, 2021

    The Author Email: Zhou Pu (zhoupu203@163.com)

    DOI:10.11884/HPLPB202032.200186

    Topics