Journal of Inorganic Materials, Volume. 36, Issue 3, 283(2021)

Preparation of TiO2/Ti3C2Tx Composite for Hybrid Capacitive Deionization

Wen XI and Haibo LI*
Author Affiliations
  • Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Ningxia 750021, China
  • show less
    References(46)

    [3] LI L, ZHAO J, SUN Y et al. Ionically cross-linked sodium alginate/ ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance[J]. Chemical Engineering Journal, 372, 1091-1103(2019).

    [4] XU X, ALLAH A E, WANG C et al. Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination[J]. Chemical Engineering Journal, 362, 887-896(2019).

    [5] CUI T, YANG T, XU C Y et al. Assessment of the impact of climate change on flow regime at multiple temporal scales and potential ecological implications in an alpine river[J]. Stochastic Environmental Research and Risk Assessment, 32, 1849-1866(2018).

    [6] ZHAO F, YUAN Z. H, ZHONG L B et al. Review on electrode materials and Capacitive Deionization (CDI) technology for desalination[J]. Technology of Water Treatment, 42, 38-44(2016).

    [7] PEÑATE B, GARCÍA-RODRÍGUEZ L. Current trends and future prospects in the design of seawater reverse osmosis desalination technology[J]. Desalination, 284, 1-8(2012).

    [8] ZHAO D, LEE L Y, ONG S L et al. Electrodialysis reversal for industrial reverse osmosis brine treatment[J]. Separation and Purification Technology, 213, 339-347(2019).

    [9] LEE K P, ARNOT T C, MATTIA D. A review of reverse osmosis membrane materials for desalination-development to date and future potential[J]. Journal of Membrane Science, 370, 1-22(2011).

    [10] GAO C J, ZHOU Y, LIU L F. Recent development and prospect of seawater reverse osmosis desalination technology[J]. Journal of Ocean Technology, 35, 1-12(2016).

    [11] ZHOU Y, YU S C, GAO C J. Reverse osmosis composite membrane (Ⅰ) chemical structure and performance[J]. Journal of Chemical Industry and Engineering, 57, 1370-1373(2006).

    [12] CHEN Y, YUE M, HUANG Z H et al. Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization[J]. Chemical Engineering Journal, 252, 30-37(2014).

    [13] TIAN X L, WANG L, CHI B et al. Formation of a tubular assembly by ultrathin Ti0.8Co0.2N nanosheets as efficient oxygen reduction electrocatalysts for hydrogen-/metal-air fuel cells[J]. ACS Catalysis, 8, 8970-8975(2018).

    [15] DENG D, AOUAD W, BRAFF W A et al. Water purification by shock electrodialysis: deionization, filtration, separation, and disinfection[J]. Desalination, 357, 77-83(2015).

    [16] YAN H Y, WANG Y M, JIANG C X et al. Ion exchange membrane electrodialysis for high salinity wastewater “zero liquid discharge”: applications, opportunities and challenges[J]. Chemical Industry and Engineering Progress, 38, 672-681(2019).

    [17] AN X, LIU Z, HU Y. Amphiphobic surface modification of electrospun nanofibrous membranes for anti-wetting performance in membrane distillation[J]. Desalination, 432, 23-31(2018).

    [18] LIU L F, ZHOU Y S, XUE J et al. Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification[J]. AICHE Journal, 65(2019).

    [20] AL-MUTAZ I S, WAZEER I. Comparative performance evaluation of conventional multi-effect evaporation desalination processes[J]. Applied Thermal Engineering, 73, 1194-1203(2014).

    [21] PORADA S, ZHAO R, VAN DER WAL A et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 58, 1388-1442(2013).

    [22] YAN J J, SHAO S F, WANG J H et al. Improvement of a multi- stage flash seawater desalination system for cogeneration power plants[J]. Desalination, 217, 191-202(2007).

    [23] AVLONITIS S A, KOUROUMBAS K, VLACHAKIS N. Energy consumption and membrane replacement cost for seawater RO desalination plants[J]. Desalination, 157, 151-158(2003).

    [24] WU Y C, YING D W, WANG Y L et al. Capacitive desalination technology and its application in wastewater treatment[J]. Technology of Water Treatment, 45, 1-15(2019).

    [25] LEE J, KIM S, KIM C et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy & Environmental Science, 7, 3683-3689(2014).

    [26] WANG S Y, WANG G, CHE X P et al. Enhancing the capacitive deionization performance of NaMnO2 by interface engineering and redox-reaction[J]. Environmental Science: Nano, 6, 2379-2388(2019).

    [28] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2, 16098(2017).

    [29] NAGUIB M, MOCHALIN V N, BARSOUM M W et al. Two- dimensional materials: 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 26, 982-982(2014).

    [30] ALHABEB M, MALESKI K, ANASORI B et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 29, 7633-7644(2017).

    [31] DING L, LI L B, LIU Y C et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater[J]. Nature Sustainability, 3, 296(2020).

    [33] GUO J, PENG Q, FU H et al. Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations[J]. The Journal of Physical Chemistry C, 119, 20923-20930(2015).

    [38] LU ZONG, WEI Y Y, DENG J J et al. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion[J]. ACS Nano, 3, 10535-10544(2019).

    [39] SRIMUK P, KAASIK F, KRÜNER B et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization[J]. Journal of Materials Chemistry, 4, 18265-18271(2016).

    [40] BAO W, TANG X, GUO X et al. Porous cryo-dried MXene for efficient capacitive deionization[J]. Joule, 2, 778-787(2018).

    [41] LOW J X, ZHANG L Y, TONG T et al. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity[J]. Journal of Catalysis, 361, 255-266(2018).

    [42] AGARTAN L, HANTANASIRISAKUL K, BUCZEK S et al. Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2Tx-MXene membrane capacitive deionization system[J]. Desalination, 477, 114267(2020).

    [43] GUO L, WANG X, LEONG Z Y et al. Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination[J]. Flat. Chem., 8, 17-24(2018).

    [44] MA J, CHENG Y, WANG L et al. Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity[J]. Chemical Engineering Journal, 384, 123329(2020).

    [45] AMIRI A, CHEN Y, TENG C B et al. Porous nitrogen-doped MXene-based electrodes for capacitive deionization[J]. Energy Storage Mater., 25, 731-739(2020).

    [46] XI W, LI H B. Pseudo-capacitive deionization behavior of CuAl- mixed metal[J]. Environmental Science: Water Research & Technology, 6, 296-302(2020).

    Tools

    Get Citation

    Copy Citation Text

    Wen XI, Haibo LI. Preparation of TiO2/Ti3C2Tx Composite for Hybrid Capacitive Deionization[J]. Journal of Inorganic Materials, 2021, 36(3): 283

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH PAPER

    Received: May. 8, 2020

    Accepted: --

    Published Online: Dec. 8, 2021

    The Author Email: Haibo LI (lihaibo@nxu.edu.cn)

    DOI:10.15541/jim20200243

    Topics