Acta Photonica Sinica, Volume. 39, Issue 12, 2224(2010)
Robust Background Subspace Based Anomaly Detection Algorithm for Hyperspectral Imagery
[1] [1] REED I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Trans on Acoustics, Speech, and Signal Processing, 1990, 38(10): 1760-1770.
[2] [2] LO E, INGRAM J. Hyperspectral anomaly detection based on minimum generalized variance method [C]. SPIE, 2008, 6966: 696603-1-7.
[3] [3] MATTEOLI S, DIANI M, CORSINI G. Improved covariance matrix estimation: interpretation and experimental analysis of different approaches for anomaly detection application [C]. SPIE, 2009, 7477: 74770K-1-9.
[4] [4] HSUEH M, CHANG C I. Adaptive causal anomaly detection for hyperspectral imagery [C]. 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS ′04), 2004:3222-3224.
[5] [5] TAKESHITA T, NOZAWA S, KIMURA F. On the bias of mahalanobis distance due to limited sample size effect [C]. IEEE, Proceedings of Second International Conference Document Analysis and Recognition, 1993: 171-174.
[6] [6] LI Guo-hong, SHI Peng-fei. Modified mahalanobis distance by compensation for error of non-dominant eigenvalues and asymmetrical distribution [J]. Acta Electronica Sinica, 2007, 35(4): 747-750.
[7] [7] GAO Yong-hong. Data depth based on spatial rank [J]. Statistics & Probability Letters, 2003, 65(3): 17-225.
Get Citation
Copy Citation Text
PU Xiao-feng, LEI Wu-hu, HUANG Tao, WANG Di. Robust Background Subspace Based Anomaly Detection Algorithm for Hyperspectral Imagery[J]. Acta Photonica Sinica, 2010, 39(12): 2224
Received: Aug. 3, 2010
Accepted: --
Published Online: Jan. 26, 2011
The Author Email: Xiao-feng PU (pxf_555@sina.com)
CSTR:32186.14.