Infrared and Laser Engineering, Volume. 53, Issue 5, 20240063(2024)

Attention-guided multi-scale infrared real-time detection of pedestrian and vehicle

Yinhui Zhang, Kai Ji, Zifen He*, and Guangchen Chen
Author Affiliations
  • Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • show less
    Figures & Tables(12)
    IRDet network model
    Visualization results of the height/width ratio of the truth bounding box
    Attention-guided global feature extraction module
    Cross-space perception module
    The distribution of \begin{document}$ \gamma $\end{document} before sparse training (a) and after sparse training (b)
    Schematic diagram of channel pruning
    Comparision of detection effects. (a) Original image; (b) YOLOv5 s; (c) IRDet
    • Table 1. Anchor box size

      View table
      View in Article

      Table 1. Anchor box size

      Detect sizeSizeAnchor size
      128×128Smaller[10, 15, 11, 30, 15, 50]
      64×64Small[19, 21, 25, 79, 32, 32]
      32×32Medium[42, 129, 50, 47, 74, 69]
      16×16Large[78, 181, 113, 99, 173, 171]
    • Table 2. Ablation experiment

      View table
      View in Article

      Table 2. Ablation experiment

      ModelK-Means++_4AGFECSPMAP-carAP-personmAPSize/MB
      YOLOv5s86.9%79.3%83.1%14.4
      Proposed87.9%82.9%85.4%16.1
      Proposed88.4%80.1%84.3%21.3
      Proposed88.1%80.2%84.2%15.5
      Proposed89.4%84.2%86.8%24.3
      YOLO-IR90.4%85.6%88.0%25.5
    • Table 3. Scaling factor comparison experiment

      View table
      View in Article

      Table 3. Scaling factor comparison experiment

      ModelmAPP/MFlops/G
      YOLOv5s83.1%7.010.1
      YOLOv5s_6483.8%10.415.5
      YOLOv5s_3284.3%10.515.6
      YOLOv5s_1684.2%10.515.6
      YOLOv5s_884.3%10.715.8
    • Table 4. Pruning experiment

      View table
      View in Article

      Table 4. Pruning experiment

      Pruning ratemAPSize/MBP/M
      088.0%25.512.3
      0.787.5%6.83.0
      0.7587.5%6.32.7
      0.887.4%5.72.4
      0.8586.7%5.42.2
      0.984.5%4.92.0
    • Table 5. Comparative experiment

      View table
      View in Article

      Table 5. Comparative experiment

      ModelAP-carAP-personmAPSize/MBP/MFlops/GFPS/frame·s−1
      SSD80.6%38.7%59.6%95.523.7175.438
      Faster-RCNN65.1%39.8%52.5%113.5136.7308.812
      YOLOX-s83.1%78.0%80.6%71.88.917.1138
      YOLOv389.0%80.6%84.8%123.561.598.960
      YOLOv488.1%82.7%85.5%105.552.476.266
      YOLOv5-s86.9%79.3%83.1%14.47.010.1150
      YOLOv7-tiny86.9%79.0%83.0%12.36.08.4131
      Damoyolo88.8%80.4%84.6%65.515.635.693
      YOLOv5-m88.1%80.5%84.3%42.120.830.698
      YOLOv8-s88.3%83.4%85.9%22.511.118.2122
      IRDet89.7%85.0%87.4%5.72.48.7110
    Tools

    Get Citation

    Copy Citation Text

    Yinhui Zhang, Kai Ji, Zifen He, Guangchen Chen. Attention-guided multi-scale infrared real-time detection of pedestrian and vehicle[J]. Infrared and Laser Engineering, 2024, 53(5): 20240063

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 6, 2024

    Accepted: --

    Published Online: Jun. 21, 2024

    The Author Email: He Zifen (zyhhzf1998@163.com)

    DOI:10.3788/IRLA20240063

    Topics