Laser & Optoelectronics Progress, Volume. 57, Issue 21, 210004(2020)

Research Progress on Adjusting and Controlling Luminescence Performance of GaN∶Eu 3+ Materials

Li Xiang1, Wang Xiaodan1, Ma Hai1, Wang Dan1, Mao Hongmin1, and Zeng Xionghui2
Author Affiliations
  • 1苏州科技大学数理学院,江苏省微纳热流技术与能源应用重点实验室, 江苏 苏州 215009
  • 2中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
  • show less
    References(49)

    [3] Baker T J, Haskell B A, Wu F et al. Characterization of planar semipolar gallium nitride films on spinel substrates[J]. Japanese Journal of Applied Physics, 44, L920-L922(2005).

    [7] McGonigle C, Gregorkiewicz T et al. Optical excitation and external photoluminescence quantum efficiency of Eu 3+ in GaN[J]. Scientific Reports, 4, 5235(2014).

    [8] Nishikawa A, Furukawa N, Lee D G et al. 1342: mrss11-1342-v02-08(2011).

    [9] Nishikawa A, Furukawa N, Kawasaki T et al. Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy[J]. Applied Physics Letters, 97, 051113(2010).

    [10] Nishikawa A, Kawasaki T, Furukawa N et al. Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection[J]. Applied Physics Express, 2, 071004(2009).

    [11] Fujiwara Y. 53(5S1): 05FA13[J]. Dierolf V. Present understanding of Eu luminescent centers in Eu-doped GaN grown by organometallic vapor phase epitaxy. Japanese Journal of Applied Physics(2014).

    [12] Mitchell B, Dierolf V, Gregorkiewicz T et al. Perspective: Toward efficient GaN-based red light emitting diodes using europium doping[J]. Journal of Applied Physics, 123, 160901(2018).

    [13] Ishii M, Koizumi A, Fujiwara Y. Enhancement in light efficiency of a GaN∶Eu red light-emitting diode by pulse-controlled injected charges[J]. Applied Physics Letters, 105, 171903(2014).

    [14] Inaba T, Mitchell B, Koizumi A et al. Emission enhancement and its mechanism of Eu-doped GaN by strain engineering[J]. Optical Materials Express, 7, 1381-1387(2017).

    [15] Kasai H, Nishikawa A, Kawasaki T et al. Improved Eu luminescence properties in Eu-doped GaN grown on GaN substrates by organometallic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 49, 048001(2010).

    [17] Furukawa N, Nishikawa A, Kawasaki T et al. Atmospheric pressure growth of Eu-doped GaN by organometallic vapor phase epitaxy[J]. Physica Status Solidi A, 208, 445-448(2011).

    [18] Zhu W, Mitchell B, Timmerman D et al. Enhanced photo/electroluminescence properties of Eu-doped GaN through optimization of the growth temperature and Eu related defect environment[J]. APL Materials, 4, 056103(2016).

    [19] Nakanishi Y, Wakahara A, Okada H et al. Effects of implantation conditions on the luminescence properties of Eu-doped GaN[J]. Nuclear Instruments and Methods in Physics Research Section B, 206, 1033-1036(2003).

    [20] Roqan I S. O'Donnell K P, Martin R W, et al. Identification of the prime optical center in GaN∶ Eu 3+[J]. Physical Review B, 81, 085209(2010).

    [21] Lorenz K, Wahl U, Alves E et al. High-temperature annealing and optical activation of Eu-implanted GaN[J]. Applied Physics Letters, 85, 2712-2714(2004).

    [22] Wang X D, Mo Y J, Yang M M et al. Cathodoluminescence properties of Pr, Tm co-implanted GaN thin films[J]. Optical Materials Express, 6, 1692-1700(2016).

    [23] Wang X D, Mo Y J, Zeng X H et al. Simultaneous emission of red, green, and blue in Pr, Er, and Tm co-implanted GaN thin films[J]. Materials Chemistry and Physics, 199, 567-570(2017).

    [24] Lee D S, Heikenfeld J, Birkhahn R et al. Voltage-controlled yellow or orange emission from GaN codoped with Er and Eu[J]. Applied Physics Letters, 76, 1525-1527(2000).

    [26] Zhang L, Liu F Q, Liu C. Voltage-controlled variable light emissions from GaN codoped with Eu, Er, and Tm[J]. Applied Physics Letters, 91, 143514(2007).

    [27] Rodrigues J. Miranda S M C, Santos N F, et al. Rare earth co-doping nitride layers for visible light[J]. Materials Chemistry and Physics, 134, 716-720(2012).

    [29] Chen F F, Xia Y L, Wang X D et al. Raman scattering and cathodoluminescence properties of Er 3+ and Eu 3+ co-doped GaN films[J]. Journal of Luminescence, 206, 603-607(2019).

    [30] Kim S K, Rhee S J, Li X et al. Selective enhancement of 1540 nm Er 3+ emission centers in Er-implanted GaN by Mg codoping[J]. Applied Physics Letters, 76, 2403-2405(2000).

    [31] Takagi Y, Suwa T, Sekiguchi H et al. Effect of Mg codoping on Eu 3+ luminescence in GaN grown by ammonia molecular beam epitaxy[J]. Applied Physics Letters, 99, 171905(2011).

    [32] Lee D, Nishikawa A, Terai Y et al. Eu luminescence center created by Mg codoping in Eu-doped GaN[J]. Applied Physics Letters, 100, 171904(2012).

    [33] Sekiguchi H, Takagi Y, Otani T et al. Emission enhancement mechanism of GaN∶Eu by Mg codoping[J]. Journal of Applied Physics, 113, 013105(2013).

    [35] Yamaga M, Watanabe H, Kurahashi M et al. Indirect excitation of Eu 3+in GaN codoped with Mg and Eu[J]. Journal of Physics: Conference Series, 619, 012025(2015).

    [36] Sekiguchi H, Sakai M, Kamada T et al. Observation of single optical site of Eu and Mg codoped GaN grown by NH3-source molecular beam epitaxy[J]. Journal of Applied Physics, 125, 175702(2019).

    [38] Lee D, Wakamatsu R, Koizumi A et al. Effect of thermal annealing on luminescence properties of Eu, Mg-codoped GaN grown by organometallic vapor phase epitaxy[J]. Applied Physics Letters, 102, 141904(2013).

    [39] Mitchell B, Lee D, Lee D et al. Vibrationally induced center reconfiguration in co-doped GaN∶Eu, Mg epitaxial layers: Local hydrogen migration vs. activation of non-radiative channels[J]. Applied Physics Letters, 103, 242105(2013).

    [40] Sekiguchi H, Sakai M, Kamada T et al. Optical sites in Eu- and Mg-codoped GaN grown by NH3-source molecular beam epitaxy[J]. Applied Physics Letters, 109, 151106(2016).

    [41] Singh A K. O’Donnell K P, Edwards P R, et al. Hysteretic photochromic switching of Eu-Mg defects in GaN links the shallow transient and deep ground states of the Mg acceptor[J]. Scientific Reports, 7, 41982(2017).

    [45] Wang R, Steckl A J, Brown E et al. Effect of Si codoping on Eu 3+ luminescence in GaN[J]. Journal of Applied Physics, 105, 043107(2009).

    [46] Bruno Cruz A V, Shinde P P, Kumar V et al. Energetics and electronic structure of GaN codoped with Eu and Si[J]. Physical Review B, 85, 045203(2012).

    [47] Lee D G, Wakamatsu R, Koizumi A et al. 52(8S): 08JM01[J]. Si into Eu-doped GaN. Japanese Journal of Applied Physics(2013).

    [48] Mishra J K, Langer T, Rossow U et al. Strong enhancement of Eu 3+ luminescence in europium-implanted GaN by Si and Mg codoping[J]. Applied Physics Letters, 102, 061115(2013).

    [49] Kaur P, Sekhon S S, Zavada J M et al. Enhanced stability of Eu in GaN nanoparticles: Effects of Si co-doping[J]. Journal of Applied Physics, 117, 224301(2015).

    Tools

    Get Citation

    Copy Citation Text

    Li Xiang, Wang Xiaodan, Ma Hai, Wang Dan, Mao Hongmin, Zeng Xionghui. Research Progress on Adjusting and Controlling Luminescence Performance of GaN∶Eu 3+ Materials[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 13, 2020

    Accepted: --

    Published Online: Nov. 13, 2020

    The Author Email:

    DOI:10.3788/LOP57.210004

    Topics