Optics and Precision Engineering, Volume. 27, Issue 3, 542(2019)
Development of mosaic technology for large-size reflective gratings
[1] [1] SAKANOI T, KASABA Y, KAGITANI M, et al.. Development of infrared echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation[J]. SPIE, 2014, 9147: 91478D.
[2] [2] SZENTGYORGYI A H, CHEIMETS P, ENG R, et al.. Hectochelle: a multi-object echelle spectrograph for the converted MMT[J]. SPIE, 1998, 3355: 242-252.
[3] [3] DEKKER H, D'ODORICO S. UVES, the UV-visual echelle spectrograph for the VLT[J]. The Messenger, 1992, 70: 13-17.
[4] [4] WAXER L J, MAYWAR D N, KELLY J H, et al.. High-energy petawatt capability for the Omega Laser[J]. Optics and Photonics News, 2005, 16(7): 30-36.
[5] [5] ZUEGEL J D, BORNEIS S, BARTY C, et al.. Laser challenges for fast ignition[J]. Fusion Science and Technology, 2006, 49(3): 453-482.
[6] [6] BLANCHOT N, BIGNON E, COC H, et al.. Multi-petawatt high energy laser project on the LIL facility in Aquitaine[J]. SPIE, 2006, 5975: 59750C.
[7] [7] BREALEY G A, FLETCHER J M, GRUNDMANN W A, et al.. Adjustable mosaic grating mounts[J]. SPIE, 1980, 240: 225-228.
[8] [8] BLASIAK T, ZHELEZNYAK S. History and construction of large mosaic diffraction gratings[J]. SPIE, 2002, 4485: 370-377.
[9] [9] ZHU Y T. High resolution spectrographs for 8-10 m class optical/IR telescopes[J]. Progress in Astronomy, 2001, 19(3): 336-345.(in Chinese)
[11] [11] MA D H, ZHAO Y X, ZENG L J. Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment[J]. Scientific Reports, 2017, 7(1): 926.
[12] [12] QIAN G L, WU J H, LI CH M.Theoretical analysis of tiled grating by multiple-exposure hologram on single substrate[J]. Optical Instruments, 2008, 30(6): 81-85. (in Chinese)
[13] [13] TURUKHANO B G, GORELIK V P, KOVALENKO S N, et al.. Phase synthesis of a holographic metrological diffraction grating of unlimited length[J]. Optics & Laser Technology, 1996, 28(4): 263-268.
[14] [14] ZENG L J, LI L F. Optical mosaic gratings made by consecutive, phase-interlocked, holographic exposures using diffraction from latent fringes.[J]. Optics Letters, 2007, 32(9): 1081-1083.
[15] [15] ZHAO J S, LI L F, WU ZH H. In-situ self-monitoring of latent image in fabrication of holographic gratings[J]. Acta Optica Sinica, 2004,24(6): 851-858. (in Chinese)
[16] [16] CHEN C G, KONKOLA P T, HEILMANN R K, et al.. Nanometer-accurate grating fabrication with scanning beam interference lithography[J]. Proceedings of SPIE -The International Society for Optical Engineering, 2002, 4936: 126-134.
[17] [17] SMITH D J, MCCULLOUGH M, XU B, et al.. Large area pulse compression gratings fabricated onto fused silica substrates using scanning beam interference lithography[C].Proceedings of International Conference on Ultrahigh Intensity Lasers Development. Shanghai Jiao Tong University,2008: 78-79.
[18] [18] SHI L, ZENG L J. Fabrication of optical mosaic gratings by consecutive holographic exposures employing a latent-fringe based alignment technique[J]. Proceedings of SPIE -The International Society for Optical Engineering, 2010, 7848: 78480S.
[19] [19] STEPP L . Thirty Meter Telescope project update[J].SPIE, 2012, 8444: 84441G.
[21] [21] QIAO J, KELLY J H, CANNING D, et al.. Interferometric tiling of large-aperture gratings for petawatt laser systems[C]. Proceedings of 2007 Quantum Electronics and Laser Science Conference, IEEE, 2007: 1-2.
[22] [22] EZAKI Y, TABATA M, KIHARA M, et al.. Development of a segmented grating mount system for firex-1[J]. Journal of Physics: Conference Series, 2008, 12(3): 032027.
[23] [23] ZHANG W H. Optimization Design and Experimental Verification of 5-DOF Grating Tiling Parallel Device[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
[24] [24] HARIMOTO T. Far-field pattern analysis for an array grating compressor[J]. Japanese Journal of Applied Physics, 2004, 43(4A): 1362-1365.
[25] [25] WANG C, ZHANG J W, DU L, et al.. Technology progress of grating tiling[J]. Laser &Optoelectronics Progress, 2011, 48(8): 080501.(in Chinese)
[26] [26] ZHAO B. Phase Matching of the Diffraction Gratings[D]. Changchun: Changchun Institute of Optics,Fine Mechanics and Physics, Chinese Academy of Sciences, 2000. (in Chinese)
[27] [27] ZHAO B, HAO D F. Manufacturing large-size grating by mosaic way[J]. Opt. Precision Eng., 2000, 8(5): 503-507. (in Chinese)
[28] [28] MA Y Q, DU J L, CHEN M Y. Far-field diffraction pattern analysis of tiled gratings[J]. Acta Photonica Sinica, 2007, 36(4): 742-745. (in Chinese)
[29] [29] MA Y Q. Study on Tiling Theory of Large-area Rating[D]. Chengdu: Sichuan University, 2007. (in Chinese)
[30] [30] MA X M, ZHANG W P. An analysis of focal spot characteristic of tiling-gratings with matrix method[J]. Journal of Guangxi University: Natural Science Edition, 2009, 34(6): 858-862. (in Chinese)
[32] [32] YANG X D. The Study of Grating Mosaic[D]. Beijing: Graduate School of China Academy of Engineering Physics, 2007. (in Chinese)
[33] [33] ZENG L J, LI L F. Method of making mosaic gratings by using a two-color heterodyne interferometer containing a reference grating[J]. Optics Letters, 2006, 31(2): 152-154.
[34] [34] HU Y, ZENG L J, LI L F. Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths[J].Optics Communications, 2007, 269(2): 285-290.
[35] [35] HU Y, ZENG L J. Grating mosaic based on image processing of far-field diffraction intensity patterns in two wavelengths[J]. Applied Optics, 2007, 46(28): 7018-7025.
[36] [36] HU Y. Theoretical Analysis of Pulse Compressors Containing Grating Mosaics and Experimental Methods for Achieving a Perfect Grating Mosaic[D]. Beijing: Tsinghua University, 2008. (in Chinese)
[37] [37] LU Y X, QI X D, LI X T, et al.. Removal of all mosaic grating errors in a single-interferometer system by a phase-difference reference window[J]. Applied Optics, 2016,55(28): 7997-8002.
[38] [38] LU Y X, QI X D, MI X T, et al.. Detection and calculation of mosaic grating error based on wavefront method[J]. Acta Optica Sinica, 2016, 36(5): 0505001. (in Chinese)
[39] [39] BUNKENBURG J, KESSLER T J, SKULSKI W,et al.. Phase-locked control of tiled-grating assemblies for chirped-pulse-amplified lasers using a Mach-Zehnder interferometer[J]. Optics Letters, 2006, 31(10): 1561-1563.
[40] [40] WANG X, ZHU Q H, ZUO Y L, et al.. Matched wavelength and incident angle for the diagnostic beam to achieve coherent grating tiling[J]. Chinese Optics Letters, 2008, 6(4): 241-243.
[41] [41] ZUO Y L, WEI X F, ZHU Q H, et al.. Theoretical and experimental study of grating tiling[J]. Acta Physica Sinica, 2007, 56(9): 5233-5236. (in Chinese)
[42] [42] BLANCHOT N, MARRE G, NAUPORT, et al.. Synthetic aperture compression scheme for a multipetawatt high-energy laser[J]. Applied Optics, 2006, 45(23): 6013-6021.
[43] [43] ZHOU Y. Research on Error Compensation Technology of Grating Tiled[D]. Chongqing: Chongqing University, 2017.(in Chinese)
[44] [44] KESSLER T J, BUNKENBURG J, HUANG H, et al.. Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers[J]. Optics Letters, 2004, 29(6): 635-637.
[45] [45] LI ZH Y, WANG T, XU G, et al.. Research on potential problems of object image grating self-tiling for applications in large aperture optical systems[J]. Applied Optics, 2013, 52(4): 718-725.
[46] [46] LI ZH Y, XU G, WANG T, et al.. Object-image-grating self-tiling to achieve and maintain stable, near-ideal tiled grating conditions[J]. Optics Letters, 2010, 35(13): 2206-2208.
[47] [47] HEIN J, KALUZA M C, BDEFELD R, et al.. POLARIS: An all diode-pumped ultrahigh peak power laser for high repetition rates [M]//SCHWOERER H, BELEITES B, MAGILL J. Lasers and Nuclei. Berlin Heidelberg: Springer, 2006: 47-66.
[48] [48] HEIN J, HORNUNG M, BDEFELD R, et al.. Multiterawatt peak power generated by the all diode pumped laser -POLARIS[C]. AIP Conference Proceedings, 2010, 1228(1): 159-174.
[49] [49] JIANG T. Research on the Key Characteristics of Large Mosaic Grating′s Mechanism[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
[50] [50] SUN Y Y. Research on Micro-Motion Mechanism in Grating Tiling Device[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
[51] [51] ZHOU W J. Research on the Moving Performance of the Parallel Mechanism Used in the Large Aperture Grating Splicing and Development of the Control System[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
[52] [52] LONG F. Analysis for Structure and Moving Precision of Large-Caliber Grating Tiling Device[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese)
[53] [53] LUO Y F. Research & Analysis of the Stability of Large Aperture Tited-grating[D]. Chongqing: Chongqing University, 2012. (in Chinese)
[55] [55] ZHOU Y, TAN B, LIAO Y F, et al.. Design of PID control algorithm on large diameter tiled grating[J]. Journal of Chongqing University, 2013,36(12): 51-56. (in Chinese)
[56] [56] ZHOU Y, LIAO Y F, LIU Y H, et al.. The micro-vibration analysis for the large aperture grating tiling device[J]. Journal of Chongqing University, 2012, 35(7): 49-53. (in Chinese)
[57] [57] ZHANG J W, CHEN W, ZHOU Y, et al.. Design and demonstration of high stability array tiled grating frame[J]. Chinese Journal of Lasers, 2012, 39(2): 0216001. (in Chinese)
[58] [58] EZAKI Y, TABATA M, KIHARA M, et al.. Development of a segmented grating mount system for firex-1[J]. Journal of Physics: Conference Series, 2008, 112(3): 032027.
[59] [59] QIAO J, KALB A, GUARDALBEN M J, et al.. Large-aperture grating tiling by interferometry for petawatt chirped-pulse-amplification systems[J]. Optics Express, 2007, 15 (15): 9562-9574.
[60] [60] MAYWAR D N, KELLY J H, WAXER L J, et al.. OMEGA EP high-energy petawatt laser: Progress and prospects[J]. Journal of Physics: Conference Series, 2008, 112(3): 32007.
[61] [61] BLANCHOT N, BEHAR G, BERTHIER T, et al.. Overview of PETAL, the multi-Petawatt project in the LMJ facility[J]. EDP Sciences, 2013, 59: 07001.
[62] [62] BLANCHOT N, BAR E, BEHAR G, et al.. Experimental demonstration of a synthetic aperture compression scheme for multi-petawatt high-energy lasers[J]. Optics Express. 2010, 18(10): 10088-10097.
[63] [63] NEAUPORT J, BONOD N. Pulse compression gratings for the PETAL project-a review of various technologies[J]. SPIE, 2009, 7132: 71320D.
Get Citation
Copy Citation Text
YANG Guo-jun, QI Xiang-dong, YU Hai-li, LI Xiao-tian, ZHANG Shan-wen, MI Xiao-tao, YU Hong-zhu. Development of mosaic technology for large-size reflective gratings[J]. Optics and Precision Engineering, 2019, 27(3): 542
Category:
Received: Sep. 13, 2018
Accepted: --
Published Online: May. 30, 2019
The Author Email: Guo-jun YANG (18366188661@163.com)