Chinese Optics Letters, Volume. 20, Issue 8, 081301(2022)

Temperature insensitive multi-channel light amplification systems on SOI platform

Junhu Zhou1, Jie You2、**, Hao Ouyang1, Runlin Miao1, Xiang’ai Cheng1, and Tian Jiang1,3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Defense Innovation Institute, Academy of Military Sciences PLA China, Beijing 100071, China
  • 3Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100020, China
  • show less
    References(24)

    [1] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 12(2021).

    [2] P. Zhou, F. Zhang, Q. Guo, S. Pan. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser. Opt. Express, 24, 18460(2016).

    [3] D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany. Integrated microwave photonics. Laser Photonics Rev., 7, 506(2013).

    [4] H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, R. T. Chen. Recent advances in silicon-based passive and active optical interconnects. Opt. Express, 23, 2487(2015).

    [5] D. Yang, Y. Huang, T. Liu, X. Ma, X. Ren. Bias-free operational monolithic symmetric-connected photodiode array. Chin. Opt. Lett., 18, 012501(2018).

    [6] A. Yariv, X. Sun. Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis. Opt. Express, 15, 9147(2007).

    [7] J. Zhang, B. Haq, J. O’Callaghan, G. Angieska, R. Gunther. Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser. Opt. Express, 26, 8821(2018).

    [8] A. D. Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, G. Roelkens. Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters. Opt. Express, 24, 13754(2016).

    [9] D. Jonathan, B. Bradley, M. Pollnau. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photonics Rev., 3, 368(2011).

    [10] P. Zhou, S. Wang, X. Wang, Y. He, W. Kan. High-gain erbium silicate waveguide amplifier and a low-threshold, high-efficiency laser. Opt. Express, 26, 16689(2018).

    [11] T. Jiang, J. You, Z. Tao, Y. Luo, X. Cheng. BER evaluation in a multi-channel graphene-silicon photonic crystal hybrid interconnect: a study of fast- and slow-light effect. Opt. Express, 28, 17286(2020).

    [12] R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express, 12, 3713(2004).

    [13] P. Qi, Y. Luo, B. Shi, W. Li, D. Liu, L. Zheng, Z. Liu, Y. Hou, Z. Fang. Phonon scattering and exciton localization: molding exciton flux in two-dimensional disorder energy landscape. eLight, 1, 12(2021).

    [14] S. Dwivedi, H. D’Heer, W. Bogaerts. Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters. IEEE Photonics Technol. Lett., 27, 871(2015).

    [15] K. Zheng, W. Zou, L. Yu, N. Qian, J. Chen. Stability optimization of channel-interleaved photonic analog-to-digital converter by extracting of dual-output photonic demultiplexing. Chin. Opt. Lett., 18, 012502(2020).

    [16] T. Jie, P. Dumon, W. Bogaerts, H. Zhang, R. Baets. Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express, 17, 14627(2009).

    [17] F. Horst, W. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, B. J. Offrein. Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express, 21, 11652(2013).

    [18] T. Balster, F. Tautz, V. Polyakov, H. Ibach, S. Sloboshanin, R. Ottking, J. A. Schaefer. Strong dispersion of the surface optical phonon of silicon carbide in the near vicinity of the surface Brillouin zone center. Surf. Sci., 600, 2886(2006).

    [19] S. Moghaddam, S. K. O’Leary. A Sellmeier extended empirical model for the spectral dependence of the refractive index applied to the case of thin-film silicon and some of its more common alloys. J. Mater. Sci. Mater. Electron., 31, 212(2020).

    [20] B. J. Frey, D. B. Leviton, T. J. Madison. Temperature dependent refractive index of silicon and germanium. Proc. SPIE, 6273, 1235(2006).

    [21] G. Ghosh, M. Endo. Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. J. Light. Technol., 12, 1338(1994).

    [22] J. Santhanam, G. P. Agrawal. Raman-induced spectral shifts in optical fibers: general theory based on the moment method. Opt. Commun., 222, 413(2003).

    [23] L. Ma, J. Li, Z. Liu, Y. Zhang, N. Zhang, S. Zheng. Intelligent algorithms: new avenues for designing nanophotonic devices. Chin. Opt. Lett., 19, 011301(2021).

    [24] B. Bai, L. Pei, J. Zheng, T. Ning, J. Li. Ultra-short plasmonic polarization beam splitter-rotator using a bent directional coupler. Chin. Opt. Lett., 18, 041301(2020).

    Tools

    Get Citation

    Copy Citation Text

    Junhu Zhou, Jie You, Hao Ouyang, Runlin Miao, Xiang’ai Cheng, Tian Jiang. Temperature insensitive multi-channel light amplification systems on SOI platform[J]. Chinese Optics Letters, 2022, 20(8): 081301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Jan. 23, 2022

    Accepted: Apr. 28, 2022

    Posted: May. 6, 2022

    Published Online: May. 26, 2022

    The Author Email: Jie You (jieyou1991@hotmail.com), Tian Jiang (tjiang@nudt.edu.cn)

    DOI:10.3788/COL202220.081301

    Topics