Infrared and Laser Engineering, Volume. 50, Issue 11, 20210506(2021)

Research progress of topological lasers (Invited)

Sai Yan, Xin Xie, and Xiulai Xu
Author Affiliations
  • Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    References(97)

    [1] Chalcraft A R A, Lam S, O’Brien D, et al. Mode structure of the L 3 photonic crystal cavity[J]. Applied Physics Letters, 90, 241117(2007).

    [2] Safavi-Naeini A H, Alegre T P M, Winger M, et al. Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity[J]. Applied Physics Letters, 97, 181106(2010).

    [3] Vučković J, Lončar M, Mabuchi H, et al. Design of photonic crystal microcavities for cavity QED[J]. Physical Review E, 65, 016608(2001).

    [4] Yamamoto T, Pashkin Y A, Astafiev O, et al. Demonstration of conditional gate operation using superconducting charge qubits[J]. Nature, 425, 941-944(2003).

    [5] Yoshie T, Vučković J, Scherer A, et al. High quality two-dimensional photonic crystal slab cavities[J]. Applied Physics Letters, 79, 4289-4291(2001).

    [6] Faraon A, Waks E, Englund D, et al. Efficient photonic crystal cavity-waveguide couplers[J]. Applied Physics Letters, 90, 073102(2007).

    [7] Goyal A K, Pal S. Design and simulation of high sensitive photonic crystal waveguide sensor[J]. Optik, 126, 240-243(2015).

    [8] Gu L, Jiang W, Chen X, et al. High speed silicon photonic crystal waveguide modulator for low voltage operation[J]. Applied Physics Letters, 90, 071105(2007).

    [9] Barik S, Karasahin A, Flower C, et al. A topological quantum optics interface[J]. Science, 359, 666-668(2018).

    [10] Tambasco J L, Corrielli G, Chapman R J, et al. Quantum interference of topological states of light[J]. Science Advances, 4, 3187(2018).

    [11] Hafezi M, Mittal S, Fan J, et al. Imaging topological edge states in silicon photonics[J]. Nature Photonics, 7, 1001-1005(2013).

    [12] Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 100, 013904(2008).

    [13] Khanikaev A B, Mousavi S H, Tse W K, et al. Photonic topological insulators[J]. Nature Materials, 12, 233-239(2013).

    [14] Lu L, Joannopoulos J D, Soljačić M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).

    [15] Mittal S, Goldschmidt E A, Hafezi M. A topological source of quantum light[J]. Nature, 561, 502-506(2018).

    [16] Ozawa T, Price H M, Amo A, et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).

    [17] Rechtsman M C, Zeuner J M, Plotnik Y, et al. Photonic Floquet topological insulators[J]. Nature, 496, 196-200(2013).

    [18] Wang Y, Lu Y H, Mei F, et al. Direct observation of topology from single-photon dynamics[J]. Physical Review Letters, 122, 193903(2019).

    [19] Wang Z, Chong Y, Joannopoulos J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 461, 772-775(2009).

    [20] Wu L H, Hu X. Scheme for achieving a topological photonic crystal by using dielectric material[J]. Physical Review Letters, 114, 223901(2015).

    [21] Chen W J, Jiang S J, Chen X D, et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide[J]. Nature Communications, 5, 5782(2014).

    [22] Yang Y, Xu Y F, Xu T, et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials[J]. Physical Review Letters, 120, 217401(2018).

    [23] Gao Y F, Sun J P, Xu N, et al. Manipulation of topological beam splitter based on honeycomb photonic crystals[J]. Optics Communications, 483, 126646(2021).

    [24] He L, Ji H Y, Wang Y J, et al. Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs[J]. Optics Express, 28, 34015-34023(2020).

    [25] Qi L, Wang G L, Liu S, et al. Engineering the topological state transfer and topological beam splitter in an even-sized Su-Schrieffer-Heeger chain[J]. Physical Review A, 102, 022404(2020).

    [26] Yang Y, Gao Z, Xue H, et al. Realization of a three-dimensional photonic topological insulator[J]. Nature, 565, 622-626(2019).

    [27] Ji C Y, Liu G B, Zhang Y, et al. Transport tuning of photonic topological edge states by optical cavities[J]. Physical Review A, 99, 043801(2019).

    [28] Kim H R, Hwang M S, Smirnova D, et al. Multipolar lasing modes from topological corner states[J]. Nature Communications, 11, 5758(2020).

    [29] Li Y, Yu Y, Liu F, et al. Topology-controlled photonic cavity based on the near-conservation of the valley degree of freedom[J]. Physical Review Letters, 125, 213902(2020).

    [30] Ota Y, Liu F, Katsumi R, et al. Photonic crystal nanocavity based on a topological corner state[J]. Optica, 6, 786-789(2019).

    [31] Raghu S, Haldane F D M. Analogs of quantum-Hall-effect edge states in photonic crystals[J]. Physical Review A, 78, 033834(2008).

    [32] Hafezi M, Demler E A, Lukin M D, et al. Robust optical delay lines with topological protection[J]. Nature Physics, 7, 907-912(2011).

    [33] Gao F, Xue H, Yang Z, et al. Topologically protected refraction of robust kink states in valley photonic crystals[J]. Nature Physics, 14, 140-144(2018).

    [34] Ma T, Shvets G. All-Si valley-hall photonic topological insulator[J]. New Journal of Physics, 18, 025012(2016).

    [35] Noh J, Huang S, Chen K P, et al. Observation of photonic topological valley Hall edge states[J]. Physical Review Letters, 120, 063902(2018).

    [36] Shalaev M I, Walasik W, Tsukernik A, et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths[J]. Nature Nanotechnology, 14, 31-34(2019).

    [37] Yoshimi H, Yamaguchi T, Katsumi R, et al. Experimental demonstration of topological slow light waveguides in valley photonic crystals[J]. Optics Express, 29, 13441-13450(2021).

    [38] Gong Y, Wong S, Bennett A J, et al. Topological insulator laser using valley-Hall photonic crystals[J]. ACS Photonics, 7, 2089-2097(2020).

    [39] Harder T H, Sun M, Egorov O A, et al. Coherent topological polariton laser[J]. ACS Photonics, 8, 1377-1384(2021).

    [40] Pilozzi L, Conti C. Topological cascade laser for frequency comb generation in PT-symmetric structures[J]. Optics Letters, 42, 5174-5177(2017).

    [41] Smirnova D, Tripathi A, Kruk S, et al. Room-temperature lasing from nanophotonic topological cavities[J]. Light: Science & Applications, 9, 127(2020).

    [42] Zhao H, Miao P, Teimourpour M H, et al. Topological hybrid silicon microlasers[J]. Nature Communications, 9, 981(2018).

    [43] Qian Z, Li Z, Hao H, et al. Absorption reduction of large purcell enhancement enabled by topological state-led mode coupling[J]. Physical Review Letters, 126, 023901(2021).

    [44] Xie X, Zhang W, He X, et al. Cavity quantum electrodynamics with second-order topological corner state[J]. Laser & Photonics Reviews, 14, 1900425(2020).

    [45] St-Jean P, Goblot V, Galopin E, et al. Lasing in topological edge states of a one-dimensional lattice[J]. Nature Photonics, 11, 651-656(2017).

    [46] Han C, Lee M, Callard S, et al. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array[J]. Light: Science & Applications, 8, 40(2019).

    [47] Bahari B, Ndao A, Vallini F, et al. Nonreciprocal lasing in topological cavities of arbitrary geometries[J]. Science, 358, 636-640(2017).

    [48] Zhang W, Xie X, Hao H, et al. Low-threshold topological nanolasers based on the second-order corner state[J]. Light: Science & Applications, 9, 109(2020).

    [49] Parto M, Wittek S, Hodaei H, et al. Edge-mode lasing in 1D topological active arrays[J]. Physical Review Letters, 120, 113901(2018).

    [50] Fang K, Yu Z, Fan S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation[J]. Nature Photonics, 6, 782-787(2012).

    [51] Asbóth J K, Oroszlány L, Pályi A. A short course on topological insulators[J]. Lecture Notes in Physics, 919, 166(2016).

    [52] Ota Y, Takata K, Ozawa T, et al. Active topological photonics[J]. Nanophotonics, 9, 547-567(2020).

    [53] Weimann S, Kremer M, Plotnik Y, et al. Topologically protected bound states in photonic parity–time-symmetric crystals[J]. Nature Materials, 16, 433-438(2017).

    [54] Ota Y, Katsumi R, Watanabe K, et al. Topological photonic crystal nanocavity laser[J]. Communications Physics, 1, 86(2018).

    [55] Xiao M, Zhang Z Q, Chan C T. Surface impedance and bulk band geometric phases in one-dimensional systems[J]. Physical Review X, 4, 021017(2014).

    [56] Alpeggiani F, Andreani L C, Gerace D. Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities[J]. Applied Physics Letters, 107, 261110(2015).

    [57] Simbula A, Schatzl M, Zagaglia L, et al. Realization of high-Q/V photonic crystal cavities defined by an effective Aubry-André-Harper bichromatic potential[J]. APL Photonics, 2, 056102(2017).

    [58] Alpeggiani F, Kuipers L. Topological edge states in bichromatic photonic crystals[J]. Optica, 6, 96-103(2019).

    [59] Pilozzi L, Conti C. Topological lasing in resonant photonic structures[J]. Physical Review B, 93, 195317(2016).

    [60] Wang Z, Chong Y D, Joannopoulos J D, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal[J]. Physical Review Letters, 100, 013905(2008).

    [61] Klembt S, Harder T H, Egorov O A, et al. Exciton-polariton topological insulator[J]. Nature, 562, 552-556(2018).

    [62] Nalitov A V, Solnyshkov D D, Malpuech G. Polariton Z topological insulator[J]. Physical Review Letters, 114, 116401(2015).

    [63] Karzig T, Bardyn C E, Lindner N H, et al. Topological polaritons[J]. Physical Review X, 5, 031001(2015).

    [64] Kartashov Y V, Skryabin D V. Two-dimensional topological polariton laser[J]. Physical Review Letters, 122, 083902(2019).

    [65] Carusotto I, Ciuti C. Quantum fluids of light[J]. Reviews of Modern Physics, 85, 299(2013).

    [66] Kartashov Y V, Skryabin D V. Modulational instability and solitary waves in polariton topological insulators[J]. Optica, 3, 1228-1236(2016).

    [67] Kartashov Y V, Skryabin D V. Bistable topological insulator with exciton-polaritons[J]. Physical Review Letters, 119, 253904(2017).

    [68] Bandres M A, Wittek S, Harari G, et al. Topological insulator laser: Experiments[J]. Science, 359, 4005(2018).

    [69] Harari G, Bandres M A, Lumer Y, et al. Topological insulator laser:Theory[J]. Science, 359, 4003(2018).

    [70] Kane C L, Mele E J. Z 2 topological order and the quantum spin Hall effect[J]. Physical Review Letters, 95, 146802(2005).

    [71] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 95, 226801(2005).

    [72] Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 314, 1757-1761(2006).

    [73] Chen X D, Deng W M, Shi F L, et al. Direct observation of corner states in second-order topological photonic crystal slabs[J]. Physical Review Letters, 122, 233902(2019).

    [74] Dutt A, Minkov M, Williamson I A D, et al. Higher-order topological insulators in synthetic dimensions[J]. Light: Science & Applications, 9, 131(2020).

    [75] Imhof S, Berger C, Bayer F, et al. Topolectrical-circuit realization of topological corner modes[J]. Nature Physics, 14, 925-929(2018).

    [76] Langbehn J, Peng Y, Trifunovic L, et al. Reflection-symmetric second-order topological insulators and superconductors[J]. Physical Review Letters, 119, 246401(2017).

    [77] Liu T, Zhang Y R, Ai Q, et al. Second-order topological phases in non-hermitian systems[J]. Physical Review Letters, 122, 076801(2019).

    [78] Serra-Garcia M, Peri V, Süsstrunk R, et al. Observation of a phononic quadrupole topological insulator[J]. Nature, 555, 342-345(2018).

    [79] Mittal S, Orre V V, Zhu G, et al. Photonic quadrupole topological phases[J]. Nature Photonics, 13, 692-696(2019).

    [80] Noh J, Benalcazar W A, Huang S, et al. Topological protection of photonic mid-gap defect modes[J]. Nature Photonics, 12, 408-415(2018).

    [81] Peterson C W, Benalcazar W A, Hughes T L, et al. A quantized microwave quadrupole insulator with topologically protected corner states[J]. Nature, 555, 346-350(2018).

    [82] Benalcazar W A, Bernevig B A, Hughes T L. Quantized electric multipole insulators[J]. Science, 357, 61-66(2017).

    [83] Xie B Y, Su G X, Wang H F, et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals[J]. Physical Review Letters, 122, 233903(2019).

    [84] Zhang X, Wang H X, Lin Z K, et al. Second-order topology and multidimensional topological transitions in sonic crystals[J]. Nature Physics, 15, 582-588(2019).

    [85] Schindler F, Cook A M, Vergniory M G, et al. Higher-order topological insulators[J]. Science Advances, 4, 0346(2018).

    [86] Franca S, van den Brink J, Fulga I C. An anomalous higher-order topological insulator[J]. Physical Review B, 98, 201114(2018).

    [87] Kempkes S N, Slot M R, van Den Broeke J J, et al. Robust zero-energy modes in an electronic higher-order topological insulator[J]. Nature Materials, 18, 1292-1297(2019).

    [88] Park M J, Kim Y, Cho G Y, et al. Higher-order topological insulator in twisted bilayer graphene[J]. Physical Review Letters, 123, 216803(2019).

    [89] Xue H, Yang Y, Gao F, et al. Acoustic higher-order topological insulator on a kagome lattice[J]. Nature Materials, 18, 108-112(2019).

    [90] Xue H, Yang Y, Liu G, et al. Realization of an acoustic third-order topological insulator[J]. Physical Review Letters, 122, 244301(2019).

    [91] Zhong H, Kartashov Y V, Szameit A, et al. Theory of topological corner state laser in Kagome waveguide arrays[J]. APL Photonics, 6, 040802(2021).

    [92] Atala M, Aidelsburger M, Barreiro J T, et al. Direct measurement of the Zak phase in topological Bloch bands[J]. Nature Physics, 9, 795-800(2013).

    [93] Liu X J, Ren M, Pan Q, et al. The Zak phase calculation of one-dimensional photonic crystals with classical and quantum theory[J]. Physica E: Low-dimensional Systems and Nanostructures, 126, 114415(2021).

    [94] Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current[J]. Applied Physics Letters, 40, 939-941(1982).

    [95] Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode[J]. Applied Physics Letters, 93, 241106(2008).

    [96] Qian C, Wu S, Song F, et al. Two-photon Rabi splitting in a coupled system of a nanocavity and exciton complexes[J]. Physical Review Letters, 120, 213901(2018).

    [97] Yang J, Qian C, Xie X, et al. Diabolical points in coupled active cavities with quantum emitters[J]. Light: Science & Applications, 9, 6(2020).

    CLP Journals

    [1] Jiani Liu, Anhe Chen, Zhiyong Li, Fangyuan Xia, Bingcai Liu, Shijie Li. High-precision shape measurement technology for convex aspheric with small aperture and large convex asphericity[J]. Infrared and Laser Engineering, 2022, 51(9): 20220190

    Tools

    Get Citation

    Copy Citation Text

    Sai Yan, Xin Xie, Xiulai Xu. Research progress of topological lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210506

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 20, 2021

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:10.3788/IRLA20210506

    Topics