Journal of the Chinese Ceramic Society, Volume. 50, Issue 5, 1248(2022)

Preparation and Properties of Bi1-xCaxFeO3-δ Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cell

FENG Weiwei*... ZHAO Huifen, SHEN Muyi, CHEN Han and GUO Lucun |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(39)

    [1] [1] ABDELKAREEM M A, LOOTAH M A, SAYED E T, et al. Fuel cells for carbon capture applications[J]. Sci Total Environ, 2021, 769: 144243.

    [2] [2] CHEN Y, ZHOU W, DING D, et al. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements[J]. Adv Energy Mater, 2015, 5(18): 1500537.

    [3] [3] FALLAH VOSTAKOLA M, AMINI HORRI B. Progress in material development for low-temperature solid oxide fuel cells: A review[J]. Energies, 2021, 14(5): 1280.

    [4] [4] GAO Z, MOGNI L V, MILLER E C, et al. A perspective on low-temperature solid oxide fuel cells[J]. Energy Environ Sci, 2016, 9(5): 162-1644.

    [5] [5] JRGENSEN M J, MOGENSEN M. Impedance of solid oxide fuel cell LSM/YSZ composite cathodes[J]. J Electrochem Soc, 2001, 148(5): A433-A442.

    [6] [6] KILNER J A, BURRIEL M. Materials for intermediate-temperature solid-oxide fuel cells[J]. Annu Rev Mater Res, 2014, 44(1): 365-393.

    [7] [7] LI Y, GEMMEN R, LIU X. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes[J]. J Power Sources, 2010, 195(11): 3345-3358.

    [9] [9] FLEIG J, MAIER J. The polarization of mixed conducting SOFC cathodes: Effects of surface reaction coefficient, ionic conductivity and geometry[J]. J Eur Ceram Soc, 2004, 24(6): 1343-1347.

    [10] [10] SHAO Z P, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005): 170-173.

    [11] [11] XIA C R, RAUCH W, CHEN F L, et al. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs[J]. Solid State Ionics, 2002, 149(1/2): 11-19.

    [12] [12] JUN A, KIM J, SHIN J, et al. Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite[J]. Angew Chem Int Ed, 2016, 55(40): 12512-12515.

    [13] [13] PHILIPPEAU B, MAUVY F, MAZATAUD C, et al. Comparative study of electrochemical properties of mixed conducting Ln2NiO4+δ (Ln=La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3-δ as SOFC cathodes associated to Ce0.9Gd0.1O2-δ, La0.8Sr0.2Ga0.8Mg0.2O3-δ and La9Sr1Si6O26.5 electrolytes[J]. Solid State Ionics, 2013, 249: 17-25.

    [14] [14] LIU Y, ZHU X, YANG W. Degradation mechanism analysis of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes at intermediate-low temperatures[J]. AIChE J, 2015, 61(11): 3879-3888.

    [15] [15] WANG H, YAKALKREMSKI K J, YEH T, et al. Mechanisms of performance degradation of (La, Sr) (Co, Fe) O3-δ solid oxide fuel cell cathodes[J]. J Electrochem Soc, 2016, 163(6): F581-F585.

    [16] [16] LI L, KONG Z, YAO B, et al. An efficient and durable perovskite electrocatalyst for oxygen reduction in solid oxide fuel cells[J]. Chem Eng J, 2020, 396: 125237.

    [17] [17] HASSAN M S, SHIM K B, YANG O B. Electrocatalytic behavior of calcium doped LaFeO3 as cathode material for solid oxide fuel cell[J]. J Nanosci Nanotechnol, 2011, 11(2): 1429-1433.

    [18] [18] SUN Q, SUN L, DOU Y, et al. Insights into the oxygen reduction reaction on Cu-doped SrFeO3-δ cathode for solid oxide fuel cells[J]. J Power Sources, 2021, 497: 229877.

    [19] [19] BAHARUDDIN N A, MUCHTAR A, SOMALU M R. Short review on cobalt-free cathodes for solid oxide fuel cells[J]. Int J Hydrogen Energy, 2017, 42(14): 9149-9155.

    [20] [20] GUO M, LI Q, GAO J, et al. Highly electrocatalytic active and durable Fe-based perovskite oxygen reduction electrode for solid oxide fuel cells[J]. J Alloys Compd, 2021, 858: 158265.

    [21] [21] CATALAN G, SCOTT J F. Physics and applications of bismuth ferrite[J]. Adv Mater, 2009, 21(24): 2463-2485.

    [22] [22] CUI J, WANG J, ZHANG X, et al. Low thermal expansion material Bi0.5Ba0.5FeO3-δ in application for proton-conducting ceramic fuel cells cathode[J]. Int J Hydrogen Energy, 2019, 44(38): 21127-21135.

    [23] [23] TU Y, CHANG C, WU M, et al. BiFeO3 /YSZ bilayer electrolyte for low temperature solid oxide fuel cell[J]. RSC Adv, 2014, 4(38): 19925-19931.

    [24] [24] ROJAC T, BENCAN A, MALIC B, et al. BiFeO3 ceramics: Processing, electrical, and electromechanical properties[J]. J Am Ceram Soc, 2014, 97(7): 1993-2011.

    [25] [25] KUMAR M M, PALKAR V R, SRINIVAS K, et al. Ferroelectricity in a pure BiFeO3 ceramic[J]. Appl Phys Lett, 2000, 76(19): 2764-2766.

    [26] [26] TIRUPATHI P, CHANDRA A. Grain and grain boundary effects in Ca2+ doped BiFeO3 multiferroic ceramics[J]. Phys Status Solidi B, 2012, 249(8): 1639-1645.

    [28] [28] NIU Y, ZHOU W, SUNARSO J, et al. High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2010, 20(43): 9619.

    [30] [30] WANG Y, WANG Y, REN W, et al. Improved conductivity of NdFeO3 through partial substitution of Nd by Ca: A theoretical study[J]. Phys Chem Chem Phys, 2015, 17(43): 29097-29102

    [31] [31] GU C, WU X, CAO J, et al. High performance Ca-containing La2-xCaxNiO4+δ (0≤x≤0.75) cathode for proton-conducting solid oxide fuel cells[J]. Int J Hydrogen Energy, 2020, 45(43): 23422- 23432.

    [32] [32] KHOMCHENKO V A, KISELEV D A, SELEZNEVA E K, et al. Weak ferromagnetism in diamagnetically-doped Bi1-xAxFeO3 (A=Ca, Sr, Pb, Ba) multiferroics[J]. Mater Lett, 2008, 62(12/13): 1927-1929.

    [33] [33] AFZAL R A, PARK K, CHO S, et al. Oxygen electrode reactions of doped BiFeO3 materials for low and elevated temperature fuel cell applications[J]. RSC Adv, 2017, 7(75): 47643-47653.

    [34] [34] CHEN F, SRENSEN O T, MENG G, et al. Chemical stability study of BaCe0.9Nd0.1O3-δ high-temperature proton-conducting ceramic[J]. J Mater Chem, 1997, 7(3): 481-485.

    [35] [35] DING X, LI M, ZHAO X, et al. A highly active and stable cathode for oxygen reduction in intermediate-temperature solid oxide fuel cells[J]. Sustainable Energy Fuels, 2020, 4(3): 1168-1179.

    [36] [36] ZHOU F, LIU Y, ZHAO X, et al. Effects of cerium doping on the performance of LSCF cathodes for intermediate temperature solid oxide fuel cells[J]. Int J Hydrogen Energy, 2018, 43(41): 18946- 18954.

    [37] [37] BAUMANN F S, FLEIG J, HABERMEIER H, et al. Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3-δ model electrodes[J]. Solid State Ionics, 2006, 177(11/12): 1071-1081.

    [38] [38] ZHENG Y, WANG S, PAN Z, et al. Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode[J]. Energy, 2021, 228: 120579.

    [39] [39] SONG X, LE S, ZHU X, et al. High performance BaFe1-xBixO3-δ as cobalt-free cathodes for intermediate temperature solid oxide fuel cells[J]. Int J Hydrogen Energy, 2017, 42(24): 15808-15817.

    [40] [40] HONG T, ZHAO M, BRINKMAN K, et al. Enhanced oxygen reduction activity on ruddlesden-popper phase decorated La0.8Sr0.2FeO3-δ 3D heterostructured cathode for solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2017, 9(10): 8659-8668.

    [41] [41] GU Y, ZHANG Y, ZHENG Y, et al. PrBaMn2O5+δ with praseodymium oxide nano-catalyst as electrode for symmetrical solid oxide fuel cells[J]. Appl Catal B, 2019, 257: 117868.

    [43] [43] GAO J, LI Q, ZHANG Z, et al. A cobalt-free bismuth ferrite-based cathode for intermediate temperature solid oxide fuel cells[J]. Electrochem Commun, 2021, 125: 106978.

    Tools

    Get Citation

    Copy Citation Text

    FENG Weiwei, ZHAO Huifen, SHEN Muyi, CHEN Han, GUO Lucun. Preparation and Properties of Bi1-xCaxFeO3-δ Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cell[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1248

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 30, 2021

    Accepted: --

    Published Online: Nov. 23, 2022

    The Author Email: Weiwei FENG (ww_feng186@163.com)

    DOI:

    CSTR:32186.14.

    Topics