Laser & Optoelectronics Progress, Volume. 58, Issue 7, 0700003(2021)

Research Development and Technological Challenge of Alkali Lasers with High Power

Yu Qi*, Hengyu Yi, Jijin Huang, and Yan Kuang
Author Affiliations
  • Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang , Sichuan 621900, China
  • show less
    References(57)

    [1] Barton D K, Falcone R, Kleppner D et al. Report of the american physical society study group on boost-phase intercept systems for national missile defense: scientific and technical issues[J]. Reviews of Modern Physics, 76, S425(2004).

    [2] Qi Y. Live round interception test analysis of airborne laser[J]. High Energy Laser Research & Development, 34, 1-3(2010).

    [3] Ren G G, Yi W W, Qi Y et al. U.S. theater and strategic UVA-borne laser weapon[J]. Laser & Optoelectronics Progress, 54, 100002(2017).

    [4] Krupke W F, Beach R J, Kanz V K et al. Diode pumpable rubidium laser[C]. Advanced Solid-State Photonics, San Antonio, Texas, 121(2003).

    [5] Jacobs S, Gould G, Rabinowitz P. Coherent light amplification in optically pumped Cs vapor[J]. Physical Review Letters, 7, 415-417(1961).

    [6] Sharma A, Bhaskar N D, Lu Y Q et al. Continuous-wave mirrorless lasing in optically pumped atomic Cs and Rb vapors[J]. Applied Physics Letters, 39, 209-211(1981).

    [7] Movsesyan M E, Shmavonyan S V. The effect of collisions on stimulated electron Raman scattering processes and parametric scattering of light in rubidium vapors[J]. Optics Spectroscopy, 63, 305-307(1987).

    [8] Beach R J, Krupke W F, Keith Kanz V et al. End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling[J]. Journal of the Optical Society of America B, 21, 2151-2163(2004).

    [9] Zhdanov B V, Ehrenreich T, Knize R J. Highly efficient optically pumped cesium vapor laser[J]. Optics Communications, 260, 696-698(2006).

    [10] Zhdanov B, Knize R J. Diode-pumped 10 W continuous wave cesium laser[J]. Optics Letters, 32, 2167-2169(2007).

    [11] Zhdanov B V, Sell J, Knize R J. Multiple laser diode array pumped Cs laser with 48 W output power[J]. Electronics Letters, 44, 582-583(2008).

    [12] Zhdanov B V, Knize R J. Alkali lasers development at laser and optics research center of the US air force academy[J]. Proceedings of SPIE, 7005, 700524(2008).

    [13] Zhdanov B V, Shaffer M K, Knize R J. Cs laser with unstable cavity transversely pumped by multiple diode lasers[J]. Optics Express, 17, 14767-14770(2009).

    [14] Endo M, Wani F. DPAL activities in Japan[J]. Proceedings of SPIE, 9255, 92551S(2015).

    [15] Krupke W F. Diode pumped alkali lasers(DPALs): an overview[J]. Proceedings of SPIE, 7005, 700521(2008).

    [16] Zweiback J, Krupke W F. 28 W average power hydrocarbon-free rubidium diode pumped alkali laser[J]. Optics Express, 18, 1444-1449(2010).

    [17] Bogachev A V, Garanin S G, Dudov A M et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 42, 95-98(2012).

    [18] Zhdanov B V, Shaffer M K, Knize R J. Scaling of diode-pumped Cs laser: transverse pump, unstable cavity, MOPA[J]. Proceedings of SPIE, 7581, 75810F(2010).

    [19] Zameroski N D, Hager G D, Rudolph W et al. Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser[J]. Journal of the Optical Society of America B, 28, 1088-1099(2011).

    [20] Krupke W F. Diode pumped alkali lasers (DPALs): a review[J]. Progress in Quantum Electronics, 36, 4-28(2012).

    [21] Kissel H, Köhler B, Biesenbach J. High-power diode laser pumps for alkali lasers (DPALs)[J]. Proceedings of SPIE, 8241, 82410Q(2012).

    [22] Barmashenko B D, Rosenwaks S, Heaven M C. Static diode pumped alkali lasers: model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions[J]. Optics Communications, 292, 123-125(2013).

    [23] Zhdanov B V, Knize R J. Review of alkali laser research and development[J]. Optical Engineering, 52, 021010(2013).

    [24] Quarrie L O. The effects of atomic rubidium vapor on the performance of optical windows in Diode Pumped Alkali Lasers (DPALs)[J]. Optical Materials, 35, 843-851(2013).

    [25] Koenning T, Irwin D, Stapleton D et al. Narrow line diode laser stacks for DPAL pumping[J]. Proceedings of SPIE, 8962, 8962F(2014).

    [26] Zhdanov B V, Knize R J. DPAL: historical perspective and summary of achievements[J]. Proceedings of SPIE, 8898, 88980V(2013).

    [27] Rosenwaks S, Yacoby E, Waichman K et al. Supersonic diode pumped alkali lasers: computational fluid dynamics modeling[J]. Proceedings of SPIE, 9650, 96500A(2015).

    [28] Pitz G A, Stalnaker D M, Guild E M et al. Advancements in flowing diode pumped alkali lasers[J]. Proceedings of SPIE, 9729, 972902(2016).

    [29] Hersman F W, Distelbrink J H, Ketel J et al. Power scaling of a wavelength-narrowed diode laser system for pumping alkali vapors[J]. Proceedings of SPIE, 9729, 972905(2016).

    [30] Koenning T, McCormick D, Irwin D et al. DPAL pump system exceeding 3 kW at 766 nm and 30 GHz bandwidth[J]. Proceedings of SPIE, 9733, 97330E(2016).

    [31] Zhdanov B V, Rotondaro M, Shaffer M et al. Lasing degradation effects in diode-pumped alkali lasers[J]. Proceedings of SPIE, 10798, 1079807(2018).

    [32] Endo M, Nagaoka R, Nagaoka H et al. Output power characteristics of diode-pumped cesium vapor laser[J]. Japanese Journal of Applied Physics, 54, 122701(2015).

    [33] Endo M, Nagaoka R, Nagaoka H et al. Scalable pump beam arrangement for diode pumped alkali lasers[J]. Proceedings of SPIE, 10513, 105130K(2018).

    [34] Wani F. High power laser activities at Kawasaki Heavy Industries, Ltd[J]. Proceedings of SPIE, 11042, 1104203(2019).

    [35] Krupke W F, Beach R J, Kanz V K et al. DPAL: a new class of CW near-infrared high-power diode-pumped alkali (vapor) lasers[J]. Proceedings of SPIE, 5334, 156-167(2004).

    [36] Bliznyuk V V, Galstyan K P, Grigoriev V S et al. Analyzing the spectral characteristics of laser diodes to optimize their pumping[J]. Bulletin of the Russian Academy of Sciences: Physics, 84, 27-29(2020).

    [37] Wallerstein A J, Perram G P, Rice C A. Excitation of higher lying states in a potassium diode-pumped alkali laser[J]. Applied Physics B, 125, 1-18(2019).

    [38] Yu J H, Zhu Q, Xie W et al. High-power laser diode-pumped alkali metal vapor laser[J]. Laser & Optoelectronics Progress, 43, 46-51(2006).

    [39] Yang Z N, Wang H Y, Lu Q S et al. Research development of laser diode pumped alkali lasers[J]. Laser & Optoelectronics Progress, 47, 051405(2010).

    [40] Yang Z N, Wang H Y, Lu Q S et al. Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser[J]. Molecular and Optical Physics, 44, 085401(2011).

    [41] Yang Z N, Wang H Y, Lu Q S et al. Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium[J]. Journal of the Optical Society of America B, 28, 1353-1364(2011).

    [42] Li Z Y, Han G C, Tan R Q et al. Self-heated diode-pumped alkali laser with a microfabricated alkali cell[J]. Optical Engineering, 56, 106105(2017).

    [43] Tan Y N, Li Y M, Gong F Q et al. 420 nm alkali blue laser based on two-photon absorption[J]. Chinese Journal of Lasers, 40, 1002011(2013).

    [44] Cao R, Gai B D, Yang J et al. Efficient generation of collimated frequency upconversion blue light in rubidium vapor[J]. Chinese Optics Letters, 13, 121903(2015).

    [45] Yu H H, Chen F, Li Y B et al. Research progress on the two-photon absorption alkali vapor laser[J]. Chinese Optics, 12, 38-47(2019).

    [46] Li Z Y, Tan R Q, Huang W et al. Diode pumped cesium vapor laser[J]. High Power Laser and Particle Beams, 26, 9-10(2014).

    [47] Ning F J, Tan R Q, Liu S Y et al. Diode pumped potassium vapor laser[J]. Chinese Journal of Lasers, 46, 0215001(2019).

    [48] Wang S Y, Han J H, An G F et al. Demonstration of a dual-wavelength alkali laser with a mixed rubidium-cesium vapor cell[J]. Optics Communications, 458, 124728(2020).

    [49] Yi H Y, Qi Y, Huang J J. Development of ship-based laser weapons system[J]. Laser Technology, 39, 834-839(2015).

    [50] Wallerstein A J, Perram G, Rice C A. Excitation of higher lying energy states in a rubidium DPAL[J]. Proceedings of SPIE, 10511, 105112J(2018).

    [51] Tian J Y, Zhang J, Peng H Y et al. 780 nm diode laser source with narrow linewidth for alkali metal vapor laser pumping[J]. Chinese Journal of Luminescence, 40, 1123-1129(2019).

    [52] Jiang Z G, Wang Y, Han J H et al. Effects of linewidth of seed-laser on output features of end-pumped alkali vapor amplifier[J]. Chinese Journal of Lasers, 43, 0502004(2016).

    [53] Wang Y S, Ma Y, Sun Y H et al. 2.62-kW, 30-GHz linearly polarized all-fiber laser with narrow linewidth and near-diffraction-limit beam quality[J]. Chinese Journal of Lasers, 46, 1215001(2019).

    [54] Markosyan A H, Kushner M J. Plasma formation in diode pumped alkali lasers sustained in Cs[J]. Journal of Applied Physics, 120, 193105(2016).

    [55] Zhdanov B V, Rotondaro M D, Shaffer M K et al. New results for temperature rise in gain medium of operating DPAL causing its degradation[J]. Proceedings of SPIE, 10436, 104360B(2017).

    [56] Wang Z H, Zhang J F, Zeng Z Q et al. Hyperfine energy level splitting structure measurement of the excited state 6D5/2 for cesium atom[J]. Laser & Optoelectronics Progress, 57, 030202(2020).

    [57] Yan D Y, Liu B W, Song H Y et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 46, 0508012(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yu Qi, Hengyu Yi, Jijin Huang, Yan Kuang. Research Development and Technological Challenge of Alkali Lasers with High Power[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0700003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 12, 2020

    Accepted: Aug. 10, 2020

    Published Online: Apr. 25, 2021

    The Author Email: Qi Yu (13881100776@139.com)

    DOI:10.3788/LOP202158.0700003

    Topics